ID de Contribution: 27

Element No. 12: Benefits and challenges of Mg in frequency metrology

lundi 22 février 2016 12:00 (30 minutes)

Among the alkaline earth(-like) elements, magnesium is considered to be an ideal candidate for optical lattice clocks: it features a very large transition Q-factor [1] and a naturally low sensitivity to blackbody radiation at the same time [2]. Moreover, as a consequence of its low mass and simple atomic structure, atomic models can be implemented with higher precision in Mg, than for Sr or Yb [3]. However, these advantages come at the expense of experimental challenges for creating ultra-cold atomic ensembles.

In this talk, we will give an overview of past and on-going works for applications in frequency metrology. We will consider the relevant level scheme of bosonic 24 Mg and highlight the technical challenges concerning laser cooling and trapping. Finally, we summarize the requirements to demonstrate an optical lattice clock with 24 Mg at 10^{-18} uncertainty.

Recently, we demonstrated the trapping of cold magnesium atoms in a magic-wavelength optical lattice and observed the strongly forbidden ${}^{1}S_{0} - {}^{3}P_{0}$ clock transition in bosonic 24 Mg. We determined the magic wavelength of 468.46(21) nm and observed a magnetic polarizability of -206(2) MHz/T² [4].

References:

- [1] A. Taichenachev et al. , Phys. Rev. Lett. 96, 083001 (2006)

- [2] S. Porsev and A. Derevianko, Phys. Rev. A 74, 020502 (2006)

- [3] J. Mitroy et al., J. Phys. B 43, 202001 (2010)

- [4] A. P. Kulosa et al., Phys. Rev. Lett. 115, 240801 (2015)

Auteur principal: Prof. RASEL, Ernst M. (Institut für Quantenoptik, Leibniz Universität Hannover)

Co-auteur: Dr KULOSA, André P. (Institut für Quantenoptik, Leibniz Universität Hannover)

Orateur: Dr KULOSA, André P. (Institut für Quantenoptik, Leibniz Universität Hannover)

Classification de Session: Session 1