Scientific requirements and dimensioning for the MICADO-MAORY SCAO RTC

Arnaud Sevin,
on behalf of the MICACO & MAORY team
Global overview of the instrument

- Shown mounted under MAORY.

Design spaces:

- MAORY & MICADO calibration unit
- SCAO WFS + MAORY NGS-WFS (Green Doughnut)
- Cryostat & derotator
- Electronics (co-rotating)
- Cable-wrap
SCAO performance

- Based on end-to-end GPU simulations (Seen in Florian FERREIRA & Sebastien DURAND)
 - Maximum strehl ~60% with SH WFS
 - Limited by M4 and telescope WFE budget
 - Residual tip-tilt ~3mas
- Based on analytic formula
 - Anisoplanatism
 - Different to 8-m telescopes, because E-ELT diameter is comparable to L0.
 - Although strehl ratio is low, PSF retains a diffraction limited core even far off-axis
 - PSF with radial & transverse cuts, 30” off-axis, for realistic L0 profile (K-band Strehl ~6%)
MICADO-MAORY SCAO subsystem mode overview

- E-ELT CCS
 - RT commands
 - Offsetting commands
- SCAO CU DM
 - Beam Selector
 - Vis
 - Modulation Mirror
 - IR Focal Sensor
 - Secondary guiding window @0.1-10Hz
 - M4 LCS
 - M5 LCS
- MS LCS
- IR Focal Sensor
- WFS-Camera
- Pupil Camera
- MAORY SCAO RTC
 - 1 cmd R_{mod} @TBD Hz
 - 2 cmd @0.1-10Hz
 - 277 cmd @25-1kHz
 - Secondary guiding window @0.1-10Hz
 - Modulation Mirror
 - Pup. Steer Mirror
 - MS LCS
- MAORY SCAO OS/MS
 - Derotator status
 - Instrument status
 - E-ELT status
 - SCAO subsystems status

- RT commands
- Offsetting commands
MICADO-MAORY SCAO
in few numbers

- WFS data transfer dimensionning
 - 1 Pyramid WFS 240x240 pixels @1kHz ~1Gb/s
 - 1 SH WFS 880x840 pixels @1kHz ~11.8Gb/s

<table>
<thead>
<tr>
<th>Type</th>
<th>Baseline</th>
<th>Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.45 µm – 0.9 µm (TBC)</td>
<td>0.45 µm – 0.9 µm (TBC)</td>
</tr>
<tr>
<td>Geometry</td>
<td>80 x 80 to 100 x 100 sub-aperture (TBC)</td>
<td>80 x 80 to 100 x 100 sub-aperture (TBC)</td>
</tr>
<tr>
<td>Sub-aperture size</td>
<td>2 x 2 pixel</td>
<td>4x4 or 6x6 (TBC)</td>
</tr>
<tr>
<td>No. of used sub-apertures</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Detector type</td>
<td>CCD220</td>
<td>NGSD</td>
</tr>
<tr>
<td>Detector size</td>
<td>240 x 240</td>
<td>880 x 840</td>
</tr>
<tr>
<td>Used frame size</td>
<td>TBD</td>
<td>800 x 800</td>
</tr>
<tr>
<td>Frame rate</td>
<td>25 Hz-1 kHz</td>
<td>25 Hz-1 kHz</td>
</tr>
<tr>
<td>Readout modes</td>
<td>Frame-transfer + 8-channel readout (TBC)</td>
<td>Rolling shutter (TBC)</td>
</tr>
</tbody>
</table>

- To relax this constraint, WFS could send only slopes and intensities to the RTC
MICADO-MAORY SCAO in few numbers

• MICADO-MAORY SCAO baseline
 – Framerate: 1000Hz
 – 1 Pyramid WFS:
 • 240x240 pixels @1kHz ~1Gb/s
 • 80x80 ssp, let say ~10k measurements
 – ELT CCS: ~5k commands
 – Command matrix for a least-square controller
 ~1.6Gb ↔ 200MB
MICADO-MAORY SCAO RTC Performance assessment

- Hard real-time subsystem:
 - Baseline, linear control with matrix-vector multiply
 - MVM Performance: 100 Gflops (but memory-bound)
 - Determinism: 10% jitter over a 1000 FPS framerate so max peak to peak jitter of 100µs is required

- Supervision module: optimization of hard-real time parameters
 - Main powerful task: regular control matrix update
 - SVD Performance: 750Gflop (but also memory-bound)
 - Addressed with a standard HPC cluster
GPU Computing performance

• For the computation part, 1 GPU is enough:

<table>
<thead>
<tr>
<th>Model</th>
<th>Architecture</th>
<th>Theoretical peak performance single precision (TFLOPS)</th>
<th>Memory bandwidth (Gb/s)</th>
<th>ECC</th>
<th>Energy consumption (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVidia Tesla K40</td>
<td>Kepler</td>
<td>4.29</td>
<td>2304</td>
<td>Yes</td>
<td>235</td>
</tr>
<tr>
<td>NVidia Tesla K80</td>
<td>Kepler</td>
<td>8.5</td>
<td>3840</td>
<td>Yes</td>
<td>300</td>
</tr>
<tr>
<td>NVidia P100</td>
<td>Pascal</td>
<td>10.6</td>
<td>5856</td>
<td>Yes</td>
<td>300</td>
</tr>
</tbody>
</table>

• But, MVM is a io bound problem, the memory bandwidth is the first performance indicator.

<table>
<thead>
<tr>
<th></th>
<th>K20C</th>
<th>K40</th>
<th>K80 (x2)</th>
<th>P100</th>
</tr>
</thead>
<tbody>
<tr>
<td>theo</td>
<td>1664</td>
<td>2304</td>
<td>1920</td>
<td>5856</td>
</tr>
<tr>
<td>ECC off</td>
<td>1400 (84%)</td>
<td>1888 (82%)</td>
<td>1536 (x2, 80%)</td>
<td>3696 (63%)</td>
</tr>
<tr>
<td>ECC on</td>
<td>1200 (72%)</td>
<td>1664 (72%)</td>
<td>1360 (x2, 70%)</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

\[\text{NGPU} = \text{CEIL} \left(\frac{\text{CR (in Gflops)}}{(\text{B (in Tb/s)} \times \text{FPP})} \right) = 1 \text{ GPU P100} \]
\[100 \text{ Gflops} / (3.696 \text{ Tb/s} \times 32) = 0.85 \]
GPU Computing performance

- Need for tailored data acquisition process to feed the GPU with pixel data

- See Maxime LAINE & Julien BERNARD presentations Wednesday
CPU Computing performance

- Intel Xeon CPU / Xeon Phi
 - Between 100 & 500 GB/s memory bandwidth per processing units
 - Up to 5 CPUs or 1 KNL (see David JENKINS presentation tomorrow)

- Reference solution using standard libraries and portable code

- Need vectorization on Xeon Phi to meet peak performance

- Long term availability of Xeon Phis?
FPGA Computing performance (see Roberto BIASI presentation)

- **ARRIA 10AS066 SoC**
 - 1.5GHz ARM dual-core Cortex-A9 co-processor
 - 1855 DSP blocks
 - 5.2MB int. RAM
 - max. 48 XCVR links

- **ARRIA 10AX115**
 - 1518 DSP blocks
 - 6.6MB int. RAM
 - max. 96 XCVR

- high cost of dedicated IP development, but deterministic by design and robust solution
ESO specific constraints

- ESO is gathering instrument specifications to build a standardized AO RTC approach
- ESO will define a RTC toolkit for instrument consortia
- ESO will publish a call for tenders on commun RTC prototyping for all instruments (mid 2017)
- Need to take into account E-ELT specificities: e.g. M4 control, handover between telescope control system and AO system ...
- Instrument calibration issues: limited daytime slots for instrument calibration may impose efficient strategies with strong computing constraints
Conclusions

- MICADO Preliminary Design Phase in progress (PDR planned in 10/2018, PDR MAORY in 02/2018)
- Concerns about the ESO development plan schedule vs. MICADO & MAORY PDR
- LESIA is leading the RTC for the MICADO-MAORY SCAO mode
- LESIA is proposing to build this RTC but concerns (in terms of resources) if ESO RTC standards are in the end orthogonal to the outcome of the GF project (see Damien Gratadour presentation)
- Interaction with ESO: needed to be compliant with RTC toolkit and design full RTC pipeline including M4 control / interaction with telescope