On-sky tests of CuReD and HWR (fast wavefront reconstructors) with CANARY

Urban Bitenc Durham University

Workshop on Real-Time Control for Adaptice Optics, 4th edition 2016 Dec 20

Contents

- We're all wasting our time! Just use a *fast* wavefront reconstructor!
- What are CuReD and HWR?
- The missing bit: wavefront-to-actuator mapping
- Test CuReD and HWR:
 - simulation
 - CANARY telescope simulator
 - on-sky with CANARY
- Conclusion

Why fast wavefront reconstructors?

- Control algorithm usually includes matrix-vector multiplication, MVM:
 - CANARY: 7722 operations in 6.5 ms easy
 - EPICS (E-ELT): 3.6 x 10⁹ operations in 0.5 ms no go (even in 2030)
- Way out: a faster algorithm

What are CuReD and HWR?

- Algorithms to reconstruct the wavefront from slopes
- **Cu**mulative **Re**construction with **D**omain decomposition: M. Rosensteiner, MathConsult, Austria
- Hierarchical Wavefront Reconstructor: N.A. Bharmal (+UB)
- Output: wavefront values at subaperture corners
- Much faster than MVM (1000x), but new: need to be tested

CuReD is fast. Very fast! But here I won't discuss this.

> The point of this talk: CuReD works. On-sky!

Wavefront-to-actuator mapping

THE MISSING BIT - NEEDED TO BE DEVELOPED FOR CANARY

- Investigated three options:
 - **Full mapping:** easy to implement, slow, theoretically best quality
 - **Identity mapping:** easy to implement, fast; good enough?
 - Interpolation mapping: pain to implement, fast, good

Full mapping

- Mapping matrix = inverted cured (or hwr-ed) poke matrix
- actuator commands = mapping matrix .dot. CuReD/HWR output
- Advantages:
 - Takes care of everything: scaling, misalignment, partially illuminated subaps, inter-actuator coupling, CuReD/HWR response function etc.
 - Straightforward to implement
- Disadvantages:
 - SLOW (MVM-like) show stopper
 - need to optimize the conditioning.

Identity mapping

- Just scale the CuReD/HWR output and put it directly on the DM
- scaling = 1./(max of CuReD/HWR response to a poke)
- actuator commands = scaling * CuReD/HWR output
- Advantages:
 - Simplest and fastest
 - Straightforward to implement
- Disadvantages:
 - Not accounting for anything except scaling (is this really good enough??)

Interpolation mapping A y_{\bullet} B' $B' = (1-x)(1-y)^*B + x^*A + y^*A + y^$

v*D +

- Bi-linear interpolation:
- Accounts for
 - misalignment between DM and SH lenslet array
 - scaling to actuators
- Advantages:
 - Still fast
 - Accounting for misalignment --> accurate enough??
- Disadvantages:
 - Need to measure the misalignment
 - A bit more work to implement...

How to measure the actuator positions

• Poke an actuator: the gradients point towards the actuator

Fit a grid to the measured positions

Fitted parameters: shift x = -6.65 % shift y = -8.91 % rotation = 0.57 deg zoom x = -5.66 % zoom y = -0.86 %

Fit quality: average residual = 5.2 % max residual = 10.5 % min residual = 0.8 %

Test CuReD and HWR

- **SIMULATION:** real-time simulation: DARC-DASP hybrid (thanks, Alastair)
- **CANARY**: MOAO path finder, used in SCAO mode
 - telescope simulator
 - on-sky
- Test the mapping methods
- Do CuReD and HWR work?
- Which gives a better Strehl?
- Do they work *on-sky*?

CuReD smoothing effect

- A very distinctive property of CuReD: smoothing
- HWR does not have this problem provides a more accurate wavefront!

CuReD instability

- **CuReD**: sometimes the loop becomes unstable in a few minutes
- Reproduced with DARC-DASP
 - Full mapping: stable
 - Identity/Interpolation mapping:
 - stable if all subapertures are fully illuminated AND bilinear interpolation for the DM
 - partially illum. subaps: unstable
 - for gaussian and bi-cubic DM unstable also with full illumination
 - lower gain --> takes longer to become unstable
- Originally not found by the authors of CuReD but confirmed with my settings

CuReD instability

• With DARC-DASP found a solution: leaky integrator

 $v_{i+1} = decayFactor*v_i + gain*\Delta v$

- decayFactor = 1.0 --> unstable
- decayFactor = 0.99 --> stable for over an hour
- Tested on CANARY: stable for over half an hour

• HWR does NOT have this problem - works with any mapping

Testing mapping methods: HWR

- Simulation agrees with CANARY
- All three similar Strehl (*maybe* full mapping slightly better)
 - --> robustness of HWR! (actuator displacement from the subap grid: 22% max, 9% average)

Testing mapping methods: CuReD

- Simulation and CANARY agree
- SURPRISE: Identity and Interpolation clearly better than full mapping!
 - reason: full mapping "un-does" the CuReD smoothing $^{"}$

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1

rejected modes = 4

0.3

measurement number

0.4

3

gain = 0.3

35

34

Performance comparison: simulation

Strehl [%]	CuReD	LSE	HWR
r0 = 20 cm	31.3	29.7	28.0
spatial filter	33.7	31.7	30.0
r0 = 60 cm	82.7	81.9	81.2

- Identity mapping used for CuReD and HWR,

- pspline DM (same conclusion for linear and gaussian)

- SURPRISE: CuReD > LSE > HWR
- Seen also by the author of CuReD:-
 - it seems he was a bit confused about that result:

"We are aware that MAP reconstructor, if optimally tuned, cannot be outperformed."

LSE vs. CuReD (interpolation mapping)

Simulation:

Strehl [%]	linear	gauss	pspline
CuReD	28.1	27.5	32.7
LSE	26.5	26.1	30.4

• CANARY and simulation agree:

CuReD >= LSE

Why is CuReD better than LSE?

• Simulation and CANARY:

CuReD (interpolation map.) gives higher Strehl than LSE

- UNEXPECTED!! How can this be?
- Smoothing improves Strehl:
 - Un-smoothened CuReD (full mapping) --> lower Strehl
 - Smoothened LSE --> higher Strehl:

20

On-sky

Strehl [%] errors: 0.5%-1.5%	LSE	CuReD full map	CuReD interp. m.	HWR full map.	HWR interp. r
26 Oct 2012,a	16.6	17.4	-	14.5*	-
27 Oct 2012,b	24.5	24.3	-	22.6*	-
26 May 2013	19.8	18.9** A	verages	18.6	-
14 July 2014	26.0	25.9 m	or each leasurement	24.7	23.1
15 July 2014	20.1	20.0	-	14.0	17.5
16 July 2014	16.2	16.3	-	13.5	12.8
6 Oct 2014, a	19.7	20.4	22.1	-	-
6 Oct 2014, b	19.4	17.6	17.6	-	-
7 Oct 2014	35.8	36.0	36.0	-	-

On sky, 2013 May 26, 1:01 - 1:53 LSE CuReD 22 A A HWR Strehl Ratio [%] 81 81 92 0.10 CANARY 14 Data taken by 120 18 r0 [cm] 12 14 Alastair 22 16

* ... bug in offloading tip-tilt, possibly affects performance

** ... includes sparse matrix, result possibly affected by instability

- 7 nights, over 5 hours of on-sky time in state.
- CuReD and HWR work stably (30-60 sec. measurements)
- Strehl: CuReD and LSE similar, HWR slightly worse.

Conclusions

- Interpolation mapping developed
 - achieves best result for CuReD
- CuReD and HWR tested:
 - simulation and CANARY results agree very well
 - CuReD stable (only) with leaky integrator
 - on-sky: CuReD and HWR both work
 - Unexpectedly, CuReD better than LSE
 - Reason: smoothing
 - HWR slightly worse than LSE
 - Very robust, insensitive to misalignment
- MNRAS 448 (2), 1199-1205 (2015)

Should we not seriously think about using CuReD as an alternative to LSE?

How about non-fully iluminated subaps?

How to measure the actuator positions

- Poke an actuator:
 - --> the gradients point towards the actuator
 - ... as long as the subaperture is fully illuminated.

Subaperture illumination on CANARY: 9 out of 36 subaps are fully illuminated

Actuator positions: intersections of gradients

- Four actuators with all four subaps
- Precision: 5% of subap side

20 actuators with measured positions

Offload tip-tilt

- CANARY: DM + TipTilt mirror
 - --> put Tip&Tilt on the TT, the rest on the DM
- Full mapping: just happens automatically
- Identity and Interpolation mapping:
 - fit a plane to the wavefront and subtract it
 - Not sure this is the optimal thing to do but was easiest to implement.

$$k_x = \frac{\Sigma w_i x_i}{\Sigma x_i^2}, k_y = \frac{\Sigma w_i y_i}{\Sigma y_i^2}$$

Summary -DM commands from CuReD/HWR output

- Full mapping:
 - multiply with the mapping matrix
- Identity mapping:
 - offload tip-tilt
 - apply scaling
- Interpolation mapping:
 - interpolate
 - offload tip-tilt
 - apply scaling

Testing mapping - conclusions

- Identity mapping is good enough
- Interpolation mapping slightly improves Strehl for CuReD
- Full mapping is not needed
- HWR: robust not sensitive to mapping method
- CuReD:
 - Full mapping performs worse than identity or interpolation because is un-does the smoothing

Note on performance comparison

- Compare reconstructors at their optimal performance:
 - optimize the loop gain [0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
 - optimize the conditioning reject [1, 2, ... , 6, 7] modes
- A complex endeavour:
 - easy in simulation
 - hard with CANARY as it changes all the time:

PERFORMANCE COMPARISONS

- Figure of merit: Least Square Estimator (LSE)
- Least Square Estimator LSE:
 - pseudo-invert system interaction matrix (aka poke matrix)
 - use Singular Value Decomposition
 - reject a few modes (how many??)
 - --> command matrix
 - MVM of the slopes vector with the command matrix

LSE vs. CuReD vs. HWR (full mapping)

Simulation:

Strehl [%]	linear	gauss	pspline
CuReD	27.4	26.9	31.1
LSE	26.5	26.1	30.4
HWR	25.6	24.7	28.6

- HWR lower than CuReD and LSE
- Disagreement between CANARY and simulation:
 - simulation: CuReD > LSE
 - CANARY: LSE > CuReD