
SPARTA Lessons Learnt, an

Operational Perspective

M. Suárez Valles (ESO)

4th Adaptive Optics Real-Time Control Workshop

Observatoire de Paris (19/12/16 – 21/12/16)

Introduction to SPARTA

 ESO Standard Platform for Adaptive optics Real-Time Applications

 Conceived for supporting the 2nd generation VLT AO instruments:
 SPHERE XAO module (SAXO)

 AOF GLAO/LTAO modules (GRAAL, GALACSI)

 Later adopted for the implementation of:
 ERIS SCAO module

 Extended through a lightweight version (SPARTA-Light) to serve:
 New AO module for AT Interferometry (NAOMI) - 4 units

 GRAVITY AO modules for the VLTI (CIAO) - 4 units

 Project lifetime already exceeds 10 yr.
 Early activities in 2004

 PDR in mid 2007; FDR end 2008

 RTC designed around a mixture of technologies:
 Hard real-time using hybrid FPGA/DSP/CPU boards and VXS serial fabrics*

 Soft real-time using mainstream Linux servers in a 1GbE cluster

(*) Regular VME CPU boards for SPARTA-Light

SPARTA Current Status

2014 2015 2016 2017 2018 2019

Comm.

Development + AIT

Development + AIT

Development + AIT

Development

Dev. + AIT

Operation

Commissioning

Commissioning

Comm.

Operation

Operation

Comm.

Dev. + AIT AIT + Comm. Operation

Operation

SPHERE

GRAAL

GALACSI

ERIS

Preparatory activities

NAOMI x 4

GRAVITY x 4

AIT + Comm.Development

Some degree of maintenance is common to all RTC system at a given point in time

Maintenance

Maintenance - Intent

 Maximize SPARTA compatibility with evolving VLT SW and HW:
 Allow systems under development to comply with standards upon delivery

 Do not preclude regular instrument SW upgrade plan once in operation

 Minimize the need for SPARTA-specific configurations in the IT spare HW pool

 Prevent critical HW from using deprecated versions of OS and SW tools

 Maximize SPARTA operational life time:
 Guarantee critical HW spare parts for the instrument’s life time (~10-15 yr.)

 Simplify SPARTA-specific, on-site troubleshooting

 Follow up and solve operational issues

Bottom line: HW and SW obsolescence mitigation, to a great extent

Maintenance – Activities (1)

 Aligning SPARTA with new versions of OS and VLT SW:
 Linux Kernel, device drivers, Linux toolchain

 VxWorks kernel, cross-development toolchain

 Common VLT libraries and tools

e.g. Porting of sFPDP communication driver, overall porting to 64-bit architecture

e.g. Porting of real-time control boards BSP to VxWorks 6.2 / 6.4 / 6.9

 Aligning SPARTA with new versions of SW products:
 ACS, RTI DDS, Intel MKL, MATLAB

e.g. Update to 64-bit ACS; regular DDS updates

e.g. MATLAB upgrade for compatibility with Linux toolchain

 Adapting SPARTA to changes in licensing scheme of SW products

e.g. Intel MKL no longer available as a standalone product

 SW bug-fixing and investigation of SPRs from systems in operation

 SW refactoring derived from systems still under development

Maintenance – Activities (2)

 Accommodating new HW standards into SPARTA:
 IT server and network standards

 VLT control standards

e.g. Migration from rack to blade server format – 1 GbE vs. 10 GbE, RAID vs. network storage

e.g. Potential VLT LCU obsolescence replacement (PowerPC Intel)

 Shielding SPARTA from changes in evolving HW products

e.g. Backwards-compatibility issues in newer revisions of the FPDP communication card

 Managing a spare parts pool for SPARTA critical HW:
 Define pool size; monitor actual vs. predicted MTBF

 Monitor product obsolescence and availability

 Attempt repair of damaged units

e.g. Spare parts pool refurbishment after Last Time Buy notice for hard real-time control boards

 Maintain SPARTA releases and installation procedure
 Stable SPARTA for VLTSW2011 / VLTSW2014 / VLTSW2016

 Overall SPARTA documentation effort

 Training to new developers / Observatory staff

Maintenance – Process

 Maintenance requires comprehensive SW configuration control:
 Diversity of instrument assemblies with frequent SW merging

 Maintenance is carried out in the absence of an actual controlled plant:
 No dedicated AO bench; no sensors/actuators

 No possibility for (synthetic) AO loop closure

 Instrument upgrades at any phase other than development require:
 Difficult negotiation of the upgrade time slot

 Re-commissioning or some form of performance re-assessment

VLT SW release

VLT HW standards

Instrument

portfolio

SW branches

SPARTA Platform

SW trunk

Maintenance – Infrastructure

 Testing of the code base under maintenance is essential

 Extensive HW infrastructure is required for testing:
 Full-scale, hard real-time control HW may hinder spare parts pool

 Full-scale, soft real-time cluster

 Some form of HW sharing becomes a must virtualization
 Multiplicity of instruments, each of them potentially under several OS versions

 Hard real-time HW expensive (and obsolete)

 Continuous integration and testing SW infrastructure:
 Automated, functional regression testing as part of periodic builds

 On-demand, numerical regression testing based on MATLAB models

 The test themselves require maintenance

 Efficient, numerical testing is a key factor:
 To be performed with the hard real-time HW, without actual AO loop feedback

 Requires input simulation and signal injection features from the RTC

 Maintenance to be carried out within limited FTE and budget

Lessons Learnt – Strategy & Scope (1)

 An RTC platform pays off for maintenance when targeted to a

few number of instances, all defined within a limited time window:
 Long-term maintenance FTE is drastically reduced:

 Difficulty in incorporating late-joiners -obsolescence, incompatible requirements

 The RTC maintenance strategy must be consolidated early

during project setup
 Otherwise difficult to secure commitments on FTE and budget

 Observatory must be involved at all times and support the strategy

 An RTC instance dedicated to maintenance must be costed

early during project setup
 Otherwise maintenance strategy at risk and spare parts pool underestimated

 A (close to) full-scale system proves necessary for meaningful testing

 The test system itself requires HW maintenance, involves licensing costs, etc.

2015 2016 2017 2018 2019

2.9 1.9 (2.05) (1.5) (1.10)

Lessons Learnt – Strategy & Scope (2)

 Secure in-house resources for FPGA development
 Otherwise firmware maintenance is hindered after the contract is closed

 The amount of firmware maintenance does not allow setting long-term contract

 Consider carefully before basing a platform design on the

single, most performant RTC instance
 Trade off with a (partially) dedicated design for the performance outlier

 Challenge requirements… Constantly…

 Avoid re-writing SW tools which are not RTC domain-specific
 Get Instrument/Observatory to extend/enhance and maintain existing tools

 SW licensing schemes are to be closely followed through the

different project phases
 Different licensing setups may apply to prototyping vs. development phases and

maintenance/development vs. production systems

 Geographical restrictions may apply: consider delivering to the Observatory in

binary form for certain modules not requiring frequent rebuild

 Yearly licensing is a significant fixed cost for maintenance: periodically evaluate

open source alternatives –potential issues wrt. support, open project lifetime…

Lessons Learnt - Testing

 Provisions for testability must be present in the RTC already at

early implementation phases
 Signal injection/extraction at input and intermediate computing pipeline points...

But also internal replay of simulated data at each stage (bypass physical I/Fs)

 Only efficient way of developing on reduced systems / testing partial deliveries

 Automate integration, functional and numerical testing
 Huge impact in the FTE required for testing during maintenance:

 Achieving comprehensive, automated RTC unit testing may not

be a realistic expectation
 Distributed components require from common services and collaborations

 Difficult to integrate real-time pipeline HW into unit (i.e. partial) test scenarios

 Targeted system testing (incl. numerical) seems to guarantee correctness

 A basic form of synthetic AO loop closure is desirable but to be

procured during the development phase
 Unlikely to be approved during maintenance, once shown “it can do without”

 Already a low frame-rate, non end-to-end facility would be extremely useful

2015 2016 2017 2018 2019

0.45 0.50 (0.60) (0.40) (0.25)

Lessons Learnt – Design (1)

 Allocate RTC hard and soft real-time functions to physically

distinct subsystems even at the expense of increased size
 Virtually no soft real-time HW/SW obsolescence in ~10 yr.

 Severe hard real-time HW obsolescence issues

 Standardize all interfaces to the Instrument/Observatory SW to

be the same in all RTC instances
 Key feature enabling future maintainability with limited FTE and HW systems

 Standardize: command, configuration, data recording/injection, etc.

 Do not expose hard real-time interfaces to the Instrument/Observatory SW

 Do not over-simplify the RTC hard real-time interfaces
 It leads to duplicity of common services –e.g. command, configuration, logging

 Evaluate a hard real-time implementation compliant with the soft real-time

technologies –i.e. middleware

 A hard real-time RTC pipeline as a “flat”, supervised pool of

configurable DoF is probably not a realistic assumption
 The hard real-time will always need to encapsulate complex business logic

 The soft real-time supervisory SW ends up being mostly a protocol adapter

Lessons Learnt – Design (2)

 Minimize the number of hard real-time development

environments and run-time target architectures
 Platform diversity adds maintenance and obsolescence risks

 Select technologies compatible with foreseeable, long-term in-house expertise

 Restrict FPGA usage to stable, performant functions requiring little maintenance

 Single-source, niche real-time HW is prone to mid-term

obsolescence, even if commercialized in large yields
 Lifetime and upgrade path controlled by very few, large customers

 Ability to repair past the end of product lifetime is poor

 Longevity of Supply/Repair plans are available but expensive

 Aerospace/military/ruggedized HW is reliable
 Observed MTBF lower than predicted under almost 100% duty cycle

 High-speed, backplane electrical serial interfaces are not

necessarily “plug’n play” technology
 Signal integrity is to be tuned and DoF not always available/accessible all the

way down from sensor, through RTC, to actuator

 Requires domain-specific knowledge –some issues not yet fully understood

 Consider alternatives and trade them for compactness

Thanks!

Questions?

