
SPARTA Lessons Learnt, an 

Operational Perspective

M. Suárez Valles (ESO)

4th Adaptive Optics Real-Time Control Workshop

Observatoire de Paris (19/12/16 – 21/12/16)



Introduction to SPARTA

 ESO Standard Platform for Adaptive optics Real-Time Applications

 Conceived for supporting the 2nd generation VLT AO instruments:
 SPHERE XAO module (SAXO)

 AOF GLAO/LTAO modules (GRAAL, GALACSI)

 Later adopted for the implementation of:
 ERIS SCAO module

 Extended through a lightweight version (SPARTA-Light) to serve:
 New AO module for AT Interferometry (NAOMI) - 4 units

 GRAVITY AO modules for the VLTI (CIAO) - 4 units

 Project lifetime already exceeds 10 yr.
 Early activities in 2004

 PDR in mid 2007; FDR end 2008

 RTC designed around a mixture of technologies:
 Hard real-time using hybrid FPGA/DSP/CPU boards and VXS serial fabrics*

 Soft real-time using mainstream Linux servers in a 1GbE cluster

(*) Regular VME CPU boards for SPARTA-Light



SPARTA Current Status

2014 2015 2016 2017 2018 2019

Comm.

Development + AIT

Development + AIT

Development + AIT

Development

Dev. + AIT

Operation

Commissioning

Commissioning

Comm.

Operation

Operation

Comm.

Dev. + AIT AIT + Comm. Operation

Operation

SPHERE

GRAAL

GALACSI

ERIS

Preparatory activities

NAOMI x 4

GRAVITY x 4

AIT + Comm.Development

Some degree of maintenance is common to all RTC system at a given point in time

Maintenance



Maintenance - Intent

 Maximize SPARTA compatibility with evolving VLT SW and HW:
 Allow systems under development to comply with standards upon delivery

 Do not preclude regular instrument SW upgrade plan once in operation

 Minimize the need for SPARTA-specific configurations in the IT spare HW pool

 Prevent critical HW from using deprecated versions of OS and SW tools

 Maximize SPARTA operational life time:
 Guarantee critical HW spare parts for the instrument’s life time (~10-15 yr.)

 Simplify SPARTA-specific, on-site troubleshooting

 Follow up and solve operational issues

Bottom line: HW and SW obsolescence mitigation, to a great extent



Maintenance – Activities (1)

 Aligning SPARTA with new versions of OS and VLT SW:
 Linux Kernel, device drivers, Linux toolchain

 VxWorks kernel, cross-development toolchain

 Common VLT libraries and tools

e.g. Porting of sFPDP communication driver, overall porting to 64-bit architecture

e.g. Porting of real-time control boards BSP to VxWorks 6.2 / 6.4 / 6.9

 Aligning SPARTA with new versions of SW products:
 ACS, RTI DDS, Intel MKL, MATLAB

e.g. Update to 64-bit ACS; regular DDS updates

e.g. MATLAB upgrade for compatibility with Linux toolchain

 Adapting SPARTA to changes in licensing scheme of SW products

e.g. Intel MKL no longer available as a standalone product

 SW bug-fixing and investigation of SPRs from systems in operation

 SW refactoring derived from systems still under development



Maintenance – Activities (2)

 Accommodating new HW standards into SPARTA:
 IT server and network standards

 VLT control standards

e.g. Migration from rack to blade server format – 1 GbE vs. 10 GbE, RAID vs. network storage

e.g. Potential VLT LCU obsolescence replacement (PowerPC Intel)

 Shielding SPARTA from changes in evolving HW products

e.g. Backwards-compatibility issues in newer revisions of the FPDP communication card

 Managing a spare parts pool for SPARTA critical HW:
 Define pool size; monitor actual vs. predicted MTBF

 Monitor product obsolescence and availability

 Attempt repair of damaged units

e.g. Spare parts pool refurbishment after Last Time Buy notice for hard real-time control boards

 Maintain SPARTA releases and installation procedure
 Stable SPARTA for VLTSW2011 / VLTSW2014 / VLTSW2016

 Overall SPARTA documentation effort

 Training to new developers / Observatory staff



Maintenance – Process

 Maintenance requires comprehensive SW configuration control:
 Diversity of instrument assemblies with frequent SW merging

 Maintenance is carried out in the absence of an actual controlled plant:
 No dedicated AO bench; no sensors/actuators

 No possibility for (synthetic) AO loop closure

 Instrument upgrades at any phase other than development require:
 Difficult negotiation of the upgrade time slot

 Re-commissioning or some form of performance re-assessment

VLT SW release

VLT HW standards

Instrument

portfolio

SW branches

SPARTA Platform

SW trunk



Maintenance – Infrastructure

 Testing of the code base under maintenance is essential

 Extensive HW infrastructure is required for testing:
 Full-scale, hard real-time control HW  may hinder spare parts pool

 Full-scale, soft real-time cluster

 Some form of HW sharing becomes a must  virtualization
 Multiplicity of instruments, each of them potentially under several OS versions

 Hard real-time HW expensive (and obsolete)

 Continuous integration and testing SW infrastructure:
 Automated, functional regression testing as part of periodic builds

 On-demand, numerical regression testing based on MATLAB models

 The test themselves require maintenance

 Efficient, numerical testing is a key factor:
 To be performed with the hard real-time HW, without actual AO loop feedback

 Requires input simulation and signal injection features from the RTC

 Maintenance to be carried out within limited FTE and budget



Lessons Learnt – Strategy & Scope (1)

 An RTC platform pays off for maintenance when targeted to a

few number of instances, all defined within a limited time window:
 Long-term maintenance FTE is drastically reduced:

 Difficulty in incorporating late-joiners -obsolescence, incompatible requirements

 The RTC maintenance strategy must be consolidated early

during project setup
 Otherwise difficult to secure commitments on FTE and budget

 Observatory must be involved at all times and support the strategy

 An RTC instance dedicated to maintenance must be costed

early during project setup
 Otherwise maintenance strategy at risk and spare parts pool underestimated

 A (close to) full-scale system proves necessary for meaningful testing

 The test system itself requires HW maintenance, involves licensing costs, etc.

2015 2016 2017 2018 2019

2.9 1.9 (2.05) (1.5) (1.10)



Lessons Learnt – Strategy & Scope (2)

 Secure in-house resources for FPGA development
 Otherwise firmware maintenance is hindered after the contract is closed

 The amount of firmware maintenance does not allow setting long-term contract

 Consider carefully before basing a platform design on the

single, most performant RTC instance
 Trade off with a (partially) dedicated design for the performance outlier

 Challenge requirements… Constantly…

 Avoid re-writing SW tools which are not RTC domain-specific
 Get Instrument/Observatory to extend/enhance and maintain existing tools

 SW licensing schemes are to be closely followed through the

different project phases
 Different licensing setups may apply to prototyping vs. development phases and

maintenance/development vs. production systems

 Geographical restrictions may apply: consider delivering to the Observatory in

binary form for certain modules not requiring frequent rebuild

 Yearly licensing is a significant fixed cost for maintenance: periodically evaluate

open source alternatives –potential issues wrt. support, open project lifetime…



Lessons Learnt - Testing

 Provisions for testability must be present in the RTC already at

early implementation phases
 Signal injection/extraction at input and intermediate computing pipeline points...

But also internal replay of simulated data at each stage (bypass physical I/Fs)

 Only efficient way of developing on reduced systems / testing partial deliveries

 Automate integration, functional and numerical testing
 Huge impact in the FTE required for testing during maintenance:

 Achieving comprehensive, automated RTC unit testing may not

be a realistic expectation
 Distributed components require from common services and collaborations

 Difficult to integrate real-time pipeline HW into unit (i.e. partial) test scenarios

 Targeted system testing (incl. numerical) seems to guarantee correctness

 A basic form of synthetic AO loop closure is desirable but to be

procured during the development phase
 Unlikely to be approved during maintenance, once shown “it can do without”

 Already a low frame-rate, non end-to-end facility would be extremely useful

2015 2016 2017 2018 2019

0.45 0.50 (0.60) (0.40) (0.25)



Lessons Learnt – Design (1)

 Allocate RTC hard and soft real-time functions to physically

distinct subsystems even at the expense of increased size
 Virtually no soft real-time HW/SW obsolescence in ~10 yr.

 Severe hard real-time HW obsolescence issues

 Standardize all interfaces to the Instrument/Observatory SW to

be the same in all RTC instances
 Key feature enabling future maintainability with limited FTE and HW systems

 Standardize: command, configuration, data recording/injection, etc.

 Do not expose hard real-time interfaces to the Instrument/Observatory SW

 Do not over-simplify the RTC hard real-time interfaces
 It leads to duplicity of common services –e.g. command, configuration, logging

 Evaluate a hard real-time implementation compliant with the soft real-time

technologies –i.e. middleware

 A hard real-time RTC pipeline as a “flat”, supervised pool of

configurable DoF is probably not a realistic assumption
 The hard real-time will always need to encapsulate complex business logic

 The soft real-time supervisory SW ends up being mostly a protocol adapter



Lessons Learnt – Design (2)

 Minimize the number of hard real-time development

environments and run-time target architectures
 Platform diversity adds maintenance and obsolescence risks

 Select technologies compatible with foreseeable, long-term in-house expertise

 Restrict FPGA usage to stable, performant functions requiring little maintenance

 Single-source, niche real-time HW is prone to mid-term

obsolescence, even if commercialized in large yields
 Lifetime and upgrade path controlled by very few, large customers

 Ability to repair past the end of product lifetime is poor

 Longevity of Supply/Repair plans are available but expensive

 Aerospace/military/ruggedized HW is reliable
 Observed MTBF lower than predicted under almost 100% duty cycle

 High-speed, backplane electrical serial interfaces are not

necessarily “plug’n play” technology
 Signal integrity is to be tuned and DoF not always available/accessible all the

way down from sensor, through RTC, to actuator

 Requires domain-specific knowledge –some issues not yet fully understood

 Consider alternatives and trade them for compactness



Thanks!

Questions?


