
Introduction
Performance Portability

Kokkos introduction

Using high-level programming tools aiming at
performance portability

A short overview of some C++-based programing model(s) for
performance portability

Pierre Kestener1

1CEA Saclay, DSM, Maison de la Simulation

December 19, 2016

1 / 28

Introduction
Performance Portability

Kokkos introduction

Content

Main HPC architectures and trends multicore, manycore, GPU,
FPGA, Power8/9, NVLink, ...

What is performance portability ?

A good software abstraction / programing model(s) (?)

library, framework, programming models ?
Parallel programming patterns
Native language, directives, DSL ?

As an example: a short overview of Kokkos: C++ library for
performance portability
Node-level parallelism, parallel pattern and data containers.

A real life example: code RamsesGPU (high-Mach number
turbulent MHD) (partially) rewritten with Kokkos.

2 / 28

http://www.maisondelasimulation.fr/projects/RAMSES-GPU/html/
https://github.com/kokkos/kokkos

Introduction
Performance Portability

Kokkos introduction

From low-level native to high-level programmning

Revisiting ways to develop software applications not only for
accelerators, but multiple architectures

reference: Axel Koehler, NVIDIA, 2012

Find a good trade-off between ease of approach and good performance on
multiple architectures.

3 / 28

http://www.hpcadvisorycouncil.com/events/2012/Switzerland-Workshop/Presentations/Day_2/6_NVIDIA.pdf

Introduction
Performance Portability

Kokkos introduction

Summary

1 Introduction

2 Performance Portability
Directives: OpenACC / OpenMP
(Active) libraries

3 Kokkos introduction
Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

4 / 28

Introduction
Performance Portability

Kokkos introduction

Supercomputers architectures - TOP500

A Supercomputer is designed to be at bleeding edge of current technology.
Leading technology paths (to exascale) using TOP500 ranks (Nov. 2016)

Multicore: Maintain complex cores, and replicate (x86, SPARC) (#7,
10)

Manycore/Embedded: Use many simpler, low power cores from
embedded (IBM BlueGene) (#4, 9)

Manycore/Sunway (# 1)

Manycore/Intel XeonPhi (1st and 2nd gen): Use many simpler cores
with wide SIMD instructions, (# 2, 5, 6)

Massively Multithread/ GPU: (# 3, 8)

Sunway Taihulight : programmed with MPI+OpenACC
Next year, we might have supercomputers build with ARMv8 CPU (From
China, Japan, US,...), DOE Coral machines (NVidia GPU+IBM Power9,
Intel KNL), ...

5 / 28

http://top500.org/lists/2013/11/
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

Introduction
Performance Portability

Kokkos introduction

About DOE Coral next generation computing facility

As part of CORAL (Next gen supercomputers): Center for
Accelerated Application Readiness
Provide programming environments and tools that enable
portability

7 IBM Quarterly, LLNL, March 1, 2016

Two Tracks for Future Large Systems

Hybrid Multi-Core
• CPU / GPU Hybrid systems
• Likely to have multiple CPUs and GPUs per node
• Small number of very fat nodes
• Expect data movement issues to be much easier than

previous systems – coherent shared memory within a
node

• Multiple levels of memory – on package, DDR, and
non-volatile

Many Core
• 10’s of thousands of nodes with millions of cores
• Homogeneous cores
• Multiple levels of memory – on package, DDR, and

non-volatile
• Unlike prior generations, future products are likely to

be self hosted

Cori at NERSC
• Self-hosted many-core system
• Intel/Cray
• 9300 single-socket nodes
• Intel® Xeon Phi™ Knights Landing (KNL)
• 16GB HBM, 64-128 GB DDR4
• Cray Aries Interconnect
• 28 PB Lustre file system @ 430 GB/s
• Target delivery date: 2016

Aurora at ALCF
• Self-hosted many-core system
• Intel/Cray
• Intel® Xeon Phi™ Knights Hill (KNH)
• Target delivery date: 2018

Summit at OLCF
• Hybrid CPU/GPU system
• IBM/NVIDIA
• 3400 multi-socket nodes
• POWER9/Volta
• More than 512 GB coherent memory per node
• Mellanox EDR Interconnect
• Target delivery date: 2017

Edison (Cray): Cray XC30
Intel Xeon E%-2695v2 12C 2.4 GHz
Aries

6 / 28

Introduction
Performance Portability

Kokkos introduction

HPC architectures - Trends - Who’s driving ?
Artificial Intelligence applications :
e.g. Japan (ABCI: a 130 single
precision PetaFlops system in late
2017) for Companies (book time for
a fee)
AI Bridging Cloud Infrastructure:
goal is 43 (FP32) GigaFlops/Watt

Energy efficiency, e.g.
Nvidia’s DGX-1 node server (1 Dual
Xeon + 8 GPU P100) aimed at deep
learning (∼ 18 (FP64)
GigaFlops/Watt).

Several new hardware solutions to
come next year and after: Intel
Knights Mill (XeonPhi, 3rd gen),
FPGA (?) for dedicated specific
applications, ... ⇒ a good
programing model !

7 / 28

https://www.nextplatform.com/2016/11/14/nvidias-saturn-v-dgx-1-cluster-stacks/

Introduction
Performance Portability

Kokkos introduction

Supercomputer node architecture

Multiples levels of hierarchy:
Need to aggregate the computing power of several 10 000 nodes !
network efficiency: latency, bandwidth, topology
memory: on-chip (cache), out-of-chip (DRAM), IO (disk)
emmerging hybrid programming model: MPI + X
What is X ? OpenMP, OpenAcc, ..., Kokkos, RAJA, ...
Even at node level MPI+X is required: e.g. KNL

Figure: Multi-core node summary, source: multicore tutorial (SC12) by G. Hager and G. Wellein

8 / 28

https://github.com/kokkos/kokkos
https://github.com/llnl/raja

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Summary

1 Introduction

2 Performance Portability
Directives: OpenACC / OpenMP
(Active) libraries

3 Kokkos introduction
Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

9 / 28

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Performance portability

Developing / maintaining a separate implementation of an
application for each new hardware platform (Intel KNL, Nvidia GPU,
ARMv8, ...) is less and less realistic

Identical code will never perform optimally on all platforms 1

Is it possible to have a single set of source codes that can be
compiled for different hardware targets ?

Performance portability should be understood as a single source
code base with

good performance on different architectures
a relatively small amount of effort required to tune app performance
from one architecture to another.
source http://www.nersc.gov/research-and-development/application-readiness-across-doe-labs

High Developper / programmer productivity

1source: Matt Norman, WACCPD 2016
10 / 28

http://www.nersc.gov/research-and-development/application-readiness-across-doe-labs
http://waccpd.org/wp-content/uploads/2016/04/WACCPD_2016_Norman.pdf

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Performance portability issue : algorithmic patterns

Is it possible to have a single set of source codes that can be compiled
for different hardware targets ?
Low-level native language: OpenCL, CUDA, ...
Directive approach (code annotations) for multicore/GPU, ...:

OpenMP 4.5 (Clang, GNU, PGI, ...)
OpenACC 2.5 (PGI, GNU, ...)

Other high-level library-based approaches (mostly c++-based, à la
TBB):

Some provide STL-like algorithmics patterns (e.g. Thrust is
CUDA-based with backends for other archs, lift, arrayFire (numerical
libraries, language wrappers, ...))
Kokkos, RAJA, ...
Cross-platform frameworks

Chamm++: message-driven execution, task and data migration,
distributed load-balancing, ...
hpx (heavy use of new c++ standards (11,14,17): std::future,
std::launch::async, distributed parallelism, ...)

Use an embedded Domain Specific Language (DSL)
Halide (for image processing),
NABLA (for HPC, developped at CEA, PDE mesh+particules apps)

11 / 28

http://www.openmp.org/
http://www.openacc.org/
https://github.com/thrust/thrust
https://github.com/nsubtil/lift.git
https://github.com/arrayfire/arrayfire
https://github.com/kokkos/kokkos
https://github.com/LLNL/RAJA
http://charmplusplus.org/
https://github.com/STEllAR-GROUP/hpx
http://halide-lang.org/
http://www.nabla-lang.org/

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Performance portability issue : memory management

Right now directives-based approaches focus on algorithmic
pattern, and less on memory layout (might change in the near future,
at least in OpenMP).
CPU and GPU for example require different memory layout for
maximun performance:

vectorization on CPU
memory coalescence on GPU

Some libraries like Kokkos promote memory layout as a major
concern

© 2016 Intel Corporation

Motivation: Variety in Memory Hierarchies

2

Platform

Memory Kind

Constant Texture SPM DDR eDRAM GDDR HBM NVRAM

Intel® Xeon® Processor - - -  - - - -

Intel® Xeon Phi™ Coprocessor - - - - -  - -

Intel® Xeon Phi™ Processor - - -  - -  -

Future System w/ 3D XPoint™ Technology - - -  - - - 

Intel® HD Graphics - -    - - -

Intel® Iris™ Graphics - -    - - -

Current Generation NVIDIA* GPU    - -  - -

Future Generation NVIDIA* GPU    - -   -

*Other names and brands may be claimed as the property of others.

12 / 28

https://github.com/kokkos/kokkos

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Programming with structured parallel patterns

pattern : a basic structural entity of an
algorithm

book Structured Parallel Programming:
Patterns for Efficient Computation

implementation: Intel TBB, OpenMP, OpenACC and many others

OpenMP/OpenAcc for GPU/XeonPhi: pattern-based comparison: map,

stencil, reduce, scan, fork-join, superscalar sequence, parallel update

reference:

A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing

13 / 28

http://parallelbook.com/
http://parallelbook.com/
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/WienkeEtAl_OpenACC-OpenMP-PatternComparison.pdf
http://link.springer.com/chapter/10.1007/978-3-319-09873-9_68

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Programming with structured parallel patterns

reference: Structured Parallel Programming with Patterns, SC13 tutorial, by M. Hebenstreilt, J. reinders, A.

Robison, M. McCool

14 / 28

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Future of accelerator programming

passive libraries: a collection of subroutines

active libraires: take an active role in compilation (specialize
algorithms, tune themselves for target architecture).

Library CUDA OpenCL Other Type
Thrust X OMP, TBB header
Bolt X TBB, DX11 link
VexCL X X header
Boost.Compute X header
C++ AMP X DX11 compiler
SyCL X compiler
ViennaCL X X OMP header
SkePU X X OMP, seq header
SkelCL X link
HPL X link
CLOGS X link
ArrayFire X X link
CLOGS X link
hemi X header
MTL4 X header
Kokkos X OMP, PTH link
Aura X X header

reference:
The Future of Accelerator Programming in C++, S. Schaetz, May 2014

15 / 28

http://www.soa-world.de/echelon/wp-content/uploads/2014/05/CppNow2014_Future_of_Accelerator_Programming.pdf

Introduction
Performance Portability

Kokkos introduction

Directives: OpenACC / OpenMP
(Active) libraries

Complex memory layout for performance

How to improve space (memory) locality in algorithm
implementations ?

High Performance Parallelism Pearls, Morton order to improve
memory locality, by Kerry Evans (INTEL), chap. 28

matrix transpose, dense matrix multiplication on Xeon, KNC

Same feature used in some Adaptive Mesh Refinement PDE solver.

16 / 28

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Summary

1 Introduction

2 Performance Portability
Directives: OpenACC / OpenMP
(Active) libraries

3 Kokkos introduction
Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

17 / 28

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Kokkos: a programming model for performance
portability

Kokkos is a C++ library with parallel algorithmic patterns AND data
containers for node-level parallelism.

Implementation relies heavily on meta-programing to derive native
low-level code (OpenMP, Pthreads, CUDA, ...) and adapt data
structure memory layout at compile-time

Core developers at SANDIA NL (H.C. Edwards, C. Trott)

18 / 28

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Kokkos: a programming model for performance
portability

Open source, https://github.com/kokkos/kokkos

Primarily developped as a base building layer for generic
high-performance parallel linear algebra in Trilinos

Also used in molecular dynamics code, e.g. LAMMPS

Goal: ISO/C++ 2020 Standard subsumes Kokkos abstractions

19 / 28

https://github.com/kokkos/kokkos
https://github.com/trilinos/Trilinos
http://lammps.sandia.gov/

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Kokkos: a programming model for performance
portability

Kokkos abstract concepts

Execution patterns (what):
parallel_for, parallel_reduce, ...

Execution policy (how):
range iterations, teams of threads, ...

Execution space (where):
OpenMP, PThreads, CUDA, numa, ...

Memory space: data containers with architecture adapted memory
layout
Kokkos::View, Kokkos::DualView, Kokkos::UnorderedMap,...

Memory layout: (important for vectorization, memory coalescence,
...)
row-major, column-major, AoS, SoA, ...
d at a(i , j ,k) architecture aware.

reference: Kokkos: Manycore programmability and performance portability, SIAM conference, Paris, 2016

20 / 28

https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/2016-04-Kokkos-SIAM-PP.pdf

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Kokkos: Sparse Matrix-Vector Multiply

Execution pattern: parallel for

Execution policy: range iteration

Execution space: default (defined at compiled time)

Work to do can be
A Lambda anonymous function, convenient for short loop bodies
A C++ class functor, maximun flexibility

21 / 28

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Future of accelerator programming: Kokkos among other

MiniMD used to bench thread-scalable algorithm before integrating them
in LAMMPS (2014)

MiniMD Performance
Lennard Jones force model using atom neighbor list

17

 Solve Newton’s equations for N particles

 Simple Lennard Jones force model:

 Use atom neighbor list to avoid N2 computations

 Moderately compute bound computational kernel

 On average 77 neighbors with 55 inside of the cutoff radius

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut)
 f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

source: http://lammps.sandia.gov/bench.html
LAMMPS Accelerator benchmarks for CPU, GPU, KNL Oct 2016

22 / 28

http://lammps.sandia.gov/bench.html
http://lammps.sandia.gov/

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Future of accelerator programming: Kokkos among other

MiniMD used to bench thread-scalable algorithm before integrating them
in LAMMPS (2014)

source: http://lammps.sandia.gov/bench.html
LAMMPS Accelerator benchmarks for CPU, GPU, KNL Oct 2016

23 / 28

http://lammps.sandia.gov/bench.html
http://lammps.sandia.gov/

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

RamsesGpu with Kokkos

RamsesGPU is a C++/Cuda code for Compressible MHD application,
developped since 2009-2010 (ran on Titane Tesla S1070, sm_13).

Several numerical schemes variants, ∼ 70 CUDA kernels.

MagnetoRotational Turbulence in accretion disks; 576-nodes jobs
(K20) on NCSA BlueWaters, collegues from CEA and Univ. Illinois:
Ryan, Gammie, Fromang, P.K.

Recently, rewrite core kernel application using Kokkos.

24 / 28

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

RamsesGpu with Kokkos

Astrophysics motivations - HPC applications
CPU/GPU performances

What is MRI (Magneto-rotational Instability) ?
High resources requirements : need for GPU acceleration
Compressible (M)HD and finite volume methods

Directionally splitted Hydro - 3D performances

Number of 106 cell updates / second versus domain size

taille M2090 K20
SP/fast SP DP SP/fast SP DP

32x32x32 18.8 26.6 (+41%)
64x64x64 83.4 95.2 (+14%)
96x96x96 100.7 175.1 (+73%)

128x128x128 114.7 32.1 9.2 178.7 (+55%) 72.4 34.9
192x192x192 133.0 226.7 (+70%)
225x225x225 137.2 39.5 11.1 210.5 (+53%) 97.4 40.6

Architecture Kepler K20 versus Fermi M2090
Rebuild application with CUDA 5.5 toolchain for architecture 3.5 and tune flags

Tune max register count for Kepler, and care about read-only data cache ==> No more
register spilling, DP perf is optimal !
in DP : Kepler is ∼ 3.5× faster than than M2090

20 / 44

With Kokkos, from Kepler K80 ⇒ Pascal P100, performance scaling
almost perfect (∼×3.0); no tuning required ; 360 Mcell-update/s
With hand-written CUDA, tuning is required to recover this perf
scaling
Number of lines of codes divided by 2-3
Get for free an efficient OpenMP implementation 25 / 28

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Want to know more ?

A free 3-days training on performance portability:
Performance portability for GPU applications using high-level programming approaches

https://events.prace-ri.eu/event/568/

Themes: OpenACC / Kokkos

Dates: 16-18 January 2017

Location: IDRIS Computing center, Orsay

Hardware platform: Ouessant (IBM Power8 + Nvidia P100)

26 / 28

https://events.prace-ri.eu/event/568/
https://events.prace-ri.eu/event/568/
http://www.idris.fr/

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

Additionnal links

https://asc.llnl.gov/CORAL-benchmarks/ : CORAL Benchmark
codes

https://asc.llnl.gov/DOE-COE-Mtg-2016/ : DOE meeting on
performance portability

https://www.hpcwire.com/2016/04/19/compilers-makes-performance-portable/

: Compilers and More: What makes performance portable, Michael
Wolfe (HPCWire article).

27 / 28

https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/DOE-COE-Mtg-2016/
https://www.hpcwire.com/2016/04/19/compilers-makes-performance-portable/

Introduction
Performance Portability

Kokkos introduction

Kokkos basics
Case study: RamsesGPU on Pascal P100
Additionnal slides

An interesting research compiler multi-platform

source: http://ft.ornl.gov/research/openarc

28 / 28

http://ft.ornl.gov/research/openarc

	Introduction
	Performance Portability
	Directives: OpenACC / OpenMP
	(Active) libraries

	Kokkos introduction
	Kokkos basics
	Case study: RamsesGPU on Pascal P100
	Additionnal slides

