

FPGA solutions for AO RTC

R.Biasi - Microgate

RTC4AO4, Paris 21 December 2016

How did we start: large, contactless adaptive mirrors

- Concept by P.Salinari (1993) still adopted by <u>all</u> units
- Contactless operation
 - Force actuators + capacitive sensors, position loop
- Membrane(s) to counteract in-plane forces
- Reference body providing the 'fixed' reference
- On-board control electronics

Large, contactless adaptive mirror concept - control

How to make a *position* actuator act as a *force* actuator?

Evolution through systems

Common custom HW/SW

Main building blocks

- BCU (Basic Computational Unit) board: backplane arbiter, communication interface, slope computation, smart switch
 - 1x ADSP-TS101S
 - 1x first generation Altera Stratix
- DSP board: real-time control, analog interface (capacitive sensors, current drivers for VCMs)
 - 2x ADSP-TS101S (ADSP-TS201S on VLT)
 - 1x first generation Altera Stratix (Stratix 2 on VLT)
 - Exist in various flavors, e.g. 6ch HV piezo control with strain gage feedback, 8ch high speed ADC for direct CCD acquisition, 'digital only', ...
- Relatively complex systems: e.g. VLT DSM has 156 ADSP-TS201S, ns-level synchronization, fully distributed computation

Common custom HW/SW

Covering the whole RT pipeline (+ analog control/acquisition)

Firmware/Software considerations

- Brute force vs. elegance (Caroline...): hard-real time coded <u>only</u> in ASM → theoretical computational power achieved, e.g. VLT DSM performs 150 GMAC/s FP sustained
- Very flexible, configurable firmware (code once, use for many configurations): all parameters/configurations loaded at run time and user configurable
- FPGA used mainly for real-time communication, routing gluing logic, and <u>some</u> <u>data (pre)processing</u>

Long lasting performance

All these systems are still maintained and upgraded

- Keck NIR-TT: multiple ROI Near Infrared Tip-Tilt (NGS) control
- MagAO 2k: upgrade to run at 2kHz and use CCID-75 camera for WFS
- LBT SOUL: upgrade to run at 2kHz and use First Light OCAM 2 camera for WFS

Still respectable performances

- Slope computer processing 1600 slopes with pyramid sensor (or SH, user configurable) fully pipelined → substantially zero (few μs) delay after last pixel acquired
- Real time reconstructor for 672 modes with multi-tap MIMO capability (beyond pure integrator) + mirror global control: total latency ~300µs
- Jitter in the few µs level ptv (mainly due to end-of-parallel processing check)

New generation: E-ELT M4, GMT

- Embedded control based on FPGA only (Arria V). Motivation:
 - Development roadmap: DSPs are becoming obsolete
 - Computational throughput vs. space
 - Computational throughput vs. power
 - FPGA needed anyway for HW interfacing
 - SoC concept (with NIOS soft-core)
- Performance:
 - Local control (quite complex!) latency ~300ns
 - Up to 36ch controlled by one FPGA @~80kHz, including redundant deterministic communication, housekeeping, safety, ...
- <u>Global control</u> part moved away from embedded control system
 - Minimize on-board power consumption and complexity
 - System modularity

What is the global control of these mirrors?

- Interface to the telescope deterministic network
- Pre-processing of deterministic input from the telescope to generate mirror commands
 - Conversion from modal commands to zonal commands (actuator space)
 - Saturation control by adjusting the number of controlled modes (force-limited rather than stroke limited)
 - Safety checks
 - Computation of feedforward forces
- Interface to the telescope timing network (typically PTP)
 - Timestamping of all events
- Acquisition and formatting of real-time telemetry

Quite demanding task: typical ELT case ~180 GMAC/s with ~10µs jitter

Technical solution

- Let's be less exotic than we used to be before... PCIe boards
- But.. build our own ones!
- Motivations why not to simply buy COTS:
 - Taylor the design to the specific AO needs
 - Own/manage the entire HW/FW/SW design
 - Support customers on long term fundamental for Microgate! See past experience
 - Extend the application to other fields/systems in AO (RTC, WFSs, ...) and possibly also in other markets: these units will become COTS!
 - Gain further expertise in the field ok, it still makes fun!
 - (Greenflash: additional stimulus + guideline for development + interaction with the group partners + QuickPlay)

The GreenFlash ecosystem: MicroServer concept

Within GreenFlash, Microgate will develop a solution for the hard real-time data pipeline with FPGA based boards for realizing a <u>stackable, energy efficient</u> <u>microserver</u> for data-intensive applications.

µXComp board

Computational-tailored board

- Based on ARRIA 10AX115:
 - 1518 DSP blocks
 - 6.6MB int. RAM
 - 96 XCVR
- Board features:
 - Optimized for heavy deterministic computation in floating-point
 - Large Bandwidth between HMC and FPGA - 4 links 16 lanes/link up to 15Gbps/lane = 120GB/s bidirectional
 - Extremely low jitter
 - More power efficient compared to GPUs
 - Offers a lot of different interfaces on board or via the FMC connector and extension cards e.g. CameraLink, S-FPDP

µXLink board

Microserver/interface board

- Based on ARRIA 10AS066 SoC:
 - 1.5GHz ARM dual-core
 - Cortex-A9 on-chip processor
 - 1855 DSP blocks
 - 5.2MB int. RAM
 - max. 48 XCVR
- Board features:
 - ARM embedded processor for stand-alone real-time box
 - Powerful PCIe root port because of ARM and OS
 - Management of accelerator cards on the PCIe interface
 - Running control software using a full OS (e.g. Linux)
 - 10/40 GbE + Infiniband
 - Easy implementation of different communication protocols
 - Offers a lot of different interfaces on board or via the FMC connector and extension cards

µXComp features

Features

- Board size (111x200 mm) compliant with PCIe standard single slots full height and >= ³/₄ length PCIe up to x8 Gen 3 (64Gb/s each direction)
- Front-panel interfaces: 1/10Gb Ethernet via fiber (SFP+) and via copper (RJ45), 40Gb Ethernet or Infiniband (QSFP)
- FMC standard extension boards attachable on the back (up to length 130mm to fit in a PCIe full length slot (320mm)
- **Sustained** performance 30 GMAC/s (floating-point) considering the memory transfer rate of 120GByte/s each direction
- Peak performance in the TMAC/s range
- **Compatible with QuickPlay** systematic interaction with PLDA to add this board to the supported portfolio

µXComp status

- Several delays due to Arria 10 availability, power tree, PCB manufacturing accident...
- Prototype manufacturing ongoing ready before end 2016
- Power tree already tested on a partially assembled prototype
- FW/SW already developed and partially tested on Altera dev board:
 - PCIe + Linux device driver tested!
 - 10GbE tested!
 - PTP tested!
 - S-FPDP-like interface to the mirror tested!
 - Our typical 'global control' configuration with~5000 input modes and 222 outputs with telescope interface – tested! full pipeline including data transfer executes in < 200µs
 - HMC interface implemented and simulated
- Complete HW/FW testing in very early 2017
- Plan to test with a full M4 petal emulator in Q3/2017

Microserver development plan

μXLink + Microserver system development plan

- µXLink development starts early 2017 strong leverage of existing experience
- µXLink prototyping and testing Q2/beg. Q3 2017
- Proceed afterwards with Microserver system integration: μXLink (acting as PCIe root complex) + several μXComp boards. Host CPU not needed!
- Application (and market) ready in 2018

Limits of the FPGAs and some hint

- Development time
 - Need an FPGA expert (HDL needs HW comprehension, is not pure SW, timing constrains, simulation, ...)
 - All this may be abstracted but <u>not completely solved</u> by high level tools like QuickPlay. Long compile/fitting time still there! Try and correct philosophy not very efficient
- Key aspect (as before with DSPs...): design a **very flexible FPGA configuration**, capable of covering a variety of problems around the main one; configurations and parameters loaded at runtime

Summary and future goals

- The FPGAs are still a valuable solution to target medium computational complexity, deterministic timing, flexible interconnect
- Powerful not only for MVM-like heavy parallel computation but also to implement other algorithms thanks to their flexibility
- High level tools (QuickPlay) are very promising still to be fully evaluated and validated by implementing real, complex cases
- Development time anyway not to be underestimated

Future goals

- MicroServer system compatibility with other accelerators, in particular GPUs still more powerful in terms of brute computational power. Is GPUDirect possible? (GreenFlash goal)
- Stratix 10 is a very appealing device for a next generation
 - Very powerful SoC (Quad-core ARM Cortex-A53)
 - Embedded HMC outstanding memory transfer rate
 - Cost?

