

Atmospheric characterisation with AO telemetry for RTC optimisation

James Osborn

Centre for Advanced Instrumentation

Required Information for tomographic AO operation

- Vertical profile of turbulence strength
 - Reconstructor optimisation
 - PSF reconstruction
- Vertical profile of turbulence velocity
 - Smart reconstructors, eg LQG
- Vertical profile of outer scale
 - PSF reconstruction
 - Also required for turbulence strength profile from AO telemetry
- Temporal evolution of the three parameters

Turbulence Strength

Turbulence Strength Profile

• Tomographic reconstructor optimisation

Impact of the Cn2 knowledge on the wide-field AO performance – tomographic error

altitude (km)

Figure 4. VED of tomographic reconstructors based on the same uniform 3-layer profile from setup A (Sect. 3.1). Now the central 7 km layer is split in 2 identical layers separated by a variable Δh . Plain : Δh =0, dash : Δh =1 500 m, dash-dot : Δh =3 000 m.

- Vertical profile of turbulence velocity
 - Smart reconstructors, eg LQG
 - Estimate of convergence noise

2 layers with different velocity

Typical example

Outer Scale

- Vertical profile of outer scale
 - Important for all model based analysis
 - PSF reconstruction
 - Also required for turbulence strength profile

Methods of measurement

- Adaptive Optics telemetry
 - Preferred
 - Can be complicated
- Numerical Model
 - Meso-Scale
 - General Circulation Model
 - Convenient
 - Difficult
- Independent Profiler
 - SCIDAR
 - Unbiased measurement
 - Different line of sight

AO telemetry profiling and outer scale

Covariance matrix

- Significant differences in tail of covariance function
- Outer scale is altitude dependent
- Problem for profile estimation
- Problem for optimising tomographic reconstructor
- Problem for PSF reconstruction
- Need outer scale profile to recover turbulence profile on large telescopes
- Effects everything that uses the turbulence profile

Measuring outer scale

• Simultaneous fitting of outer scale and Cn2 profile

Measuring Outer Scale

- New technique
- Tomographic reconstruction of turbulent volume
- Independent of r0

Convergence and dataset length

- Looks like smaller L₀
- Problem for profile recovery
- Different for every layer wind speed dependent
- Can make a model match using smaller L0 but then model is incorrect

Atmospheric convergence V's divergence

- Random Walk -> variance \propto 1/t
- Smaller outer scale reduces convergence time
- Different residuals on different WFSs leads to quasi-static aberrations in AO correction

- Impact on tomographic reconstruction?
- a lot more work to do

Covariance function covers full cross covariance function

Extent of covariance function makes detection of weak layers difficult

Limited to layers approx. >1/5 strength of maximum

• Overlap of all covariance peaks

Independent Profiler

Eg Stereo-SCIDAR, turbulence strength, velocity

- Turbulence strength
- Turbulence velocity
- No convergence issue
- No outer scale issue
- Unbiased
- Validated
- Different line of sight

Numerical Modelling

Masciadri et sl., 2016

- Turbulence strength
- Needs site specific calibration
- Used for scheduling
- Turbulence velocity (validated)
- Very convenient

	Correlation	Bias	RMSE
Speed	0.90	-0.8 m/s	1.9 m/s
Direction	0.93	-2.6 degrees	12.5 degrees

Good enough for turbulence velocity?

Conclusions

- Atmospheric characterisation with AO telemetry is complicated
 - Requires open-loop slopes (need to know what the telescope is doing)
 - Requires outer scale profile
 - Requires statistically converged data
 - Balance with atmospheric variations
- Implications of atmospheric turbulence is important for AO
 - Convergence
 - Variability
 - Median / actual profiles
- Is turbulence velocity profile from numerical model / external profiler good enough?
- Make use of all data sources