
Project	#671662	funded	by	European	Commission	under	program	H2020-EU.1.2.2	coordinated	in	H2020-FETHPC-2014	

A	Real	Time	Controller	for	E-ELT
Addressing	the	jitter/latency	constraints

Maxime Lainé,	Denis	Perret
LESIA	/	Observatoire de	Paris



Dec	21st 2016

Green	Flash

RTC	prototypes	or	E-ELT	AO	system
European	project:	Horizon	2020

Research	and	innovation	program

3	years	project	(a	year	has	passed	already)
Low	cost	and	low	energy	consumption	RTC
Different	kind	of	accelerators	characterization

GPU FPGA XeonPhi

Public/private	sector	partnership



Dec	21st 2016

E-ELT	– Numbers	&	Methods

Segmented	Slopes/MVM	processingSequential	Slopes/MVM	processing

Case Method Dimension Encoding Frequency Size Throughput

MCAO Shack-
Hartmann 1.6k	x	1.6k 16	bits 500Hz 40.96Mb	

(5,12Mo) 20.48	Gb/s

SCAO Shack-
Hartmann 800	x	800 16	bits 1000Hz 10.24Mb	

(1,28Mo) 10.24	Gb/s

SCAO Pyramid 240	x	240 16	bits 1000Hz ~1Mb	
(~125Ko) 1	Gb/s



Dec	21st 2016

E-ELT	– Numbers	&	Methods

Case Method Dimension Encoding Frequency Size Throughput

MCAO Shack-
Hartmann 1.6k	x	1.6k 16	bits 500Hz 40.96Mb	

(5,12Mo) 20.48	Gb/s

SCAO Shack-
Hartmann 800	x	800 16	bits 1000Hz 10.24Mb	

(1,28Mo) 10.24	Gb/s

SCAO Pyramid 240	x	240 16	bits 1000Hz ~1Mb	
(~125Ko) 1	Gb/s

MCAO	Case:
40,96	Mb	with	40Gb/s	network	

=>	1ms	latency



Dec	21st 2016

Latency	and	jitter	constraints

Latency
typical	optic	fiber: 4,9µs/Km

Closest	city	130km	(Antofagasta)
implies	0.630ms	latency

(+transfer	time)

MCAO	2ms/iter,	SCAO	1ms/iter

The	nearer	the	better

Jitter
Under	10%	of	overall	latency	
in	order	to	be	“manageable”

Too	much	jitter	
Too	much	frame	skips	
Correction	stability	hard	to	reach

The	lesser	the	better



Dec	21st 2016

Usual	Telescope	RTC	– SPARTA

At	ELT	scales:	needs	for	a	“super-calculator”	in	the	observatory

Design	for	VLT	scales

RTC	BOX:
x86	CPU
FPGA
DSP

Co-processing	
Cluster:
X86	CPU



Dec	21st 2016

E-ELT	– GreenFlash RTC	Prototype

40
	G
bE

ne
tw

or
k

Hi
gh
	b
an
dw

id
th

Lo
w
	la
te
nc
y

40
	G
bE

ne
tw

or
k

Hi
gh
	b
an
dw

id
th

Super-
visor

Real	
Time	

Controller

Telemetry

Sensor(s)

DM

High	
framerate

High	bandwidth
Low	latency

Fast	storage
high	throughput

Low	latency
Low	jitter

High	bandwidth High	throughput



Dec	21st 2016

Legacy	GPU	programming

GPU GPU	
RAM

CPU CPU	
RAM

PCIe

10GbE	
NIC

main	{
setup();
while(run){
recv(…);
cudaMemcpy(…,	HostToDevice);
computing_kernel<<<>>>(…);
cudaMemcpy(…,	DeviceToHost);
send(…);

}
}



Dec	21st 2016

Legacy	GPU	Programming

﻿cudaMemcopy()	overhead	times	(5.12Mo	in,	64Ko	out)

﻿Kernel	launches	overhead	times

Both	cases	:	jitter	of	20	to	30	µsec



Dec	21st 2016

Legacy	GPU	Programming

﻿Kernel	launches	overhead	times

Both	cases	:	jitter	of	20	to	30	µsec	(40	µsec	sometimes)

﻿cudaMemcopy()	overhead	times	(5.12Mo	in,	64Ko	out)



Dec	21st 2016

Legacy	GPU	programming

camera
integration

transfer

transfer
handling

data /	exec
handling

sequential
processing

segmented
processing

i i+1 i+2

i i+1i-1

MCAO	:	image	40.96Mb,	commands	512Kb
Over	40GbE	network	transfer	takes	almost	1ms
Same	for	cudaMemcpy()	operations

Leaves	not	enough	to	no	time	for	computations



Dec	21st 2016

GPUDirect +	Custom	FPGA	NIC

Allows	third	party	PCI-e	device	p2p	access
Goals	:	
Negates	latency	overhead	and	reduce	jitter	induced	by	cudaMemcpy

Linux	Kernel	module:	expose	CUDA	buffers	phy@

﻿cudaMemcopy()	overhead	times	(5,12Mo	in,	64Ko	out)



Dec	21st 2016

Persistent	CUDA	kernel

Exports	computation	loop	on	GPU
Goals	:	
Reduce	kernel	launch	jitter	&	start	computations	as	soon	as	data	arrive

Uses	memory	polling	for	data	arrival	detection

﻿Kernel	launches	overhead	times



Dec	21st 2016

Persistent	kernel	+	GPUDirect

Problem:	GPU	can’t command	FPGA
Mapped	CPU	memory	in	CUDA	for	GPU/CPU	notification	

main	{
setup();
persistent_kernel<<<>>>(…);
while(run){
waitGPU(…);
startDMATransfer(…);

}
}

persistent_kernel(…){
while(run){
pollMemory(…);
notifyCPU(…);

}
}

GPU GPU	
RAM

CPU CPU	
RAM

PCIe

10GbE	
FPGA	
NIC

notify

start



Dec	21st 2016

Persistent	kernel	+	GPUDirect

FPGA	writes/reads	directly	to/from	GPU	memory
Using	only	writes	would	be	better	though

FPGA	NIC

Host	
ram

CPU	app

Camera	control

FPGA	control

GPU	ram GPU

Camera	protocol
handler

DMADMC	protocol
handler

DMA

UDP	
Offload
Engine

PC
I-e

	3
.0

Pixels	
ring	
buffer

DM	
com
buffer

DMA

polling	kernel

compute
kernels

Sync
thread

notify

st
ar
t

PC
I-e

	3
.0DMA

answers

Latency
measurement

DMAmeasures



Dec	21st 2016

GPUDirect &	FPGA	NIC	- RTT

FPGA	PLDA	XPressG5	
GPU	Tesla	C2070	
OS	Debian wheezy

Camera	EVT	HS-2000M
10GbE	network

µsec

iterations

No	GPUDirect

GPUDirect +	persistent	kernel

SCAO	Pyramid	case:	240	x	240	pixels,	encoded	on	16b

Results	are	coherent	with	expectations



Dec	21st 2016

Persistent	kernel	+	GPUDirect

camera
integration

transfer

transfer
handling

data /	exec
handling

sequential
processing

segmented
processing

i i+1 i+2

i i+1i-1

If	it	scales	to	MCAO	case



Dec	21st 2016

IOMemory mapping	(CUDA	7.5)

Mapping FPGA addresses into CUDA memory
space allows DMA control from gpu

main	{
setup();
persistent_kernel <<<>>>(…);
…

}

persistent_kernel(…){
while(run){
pollMemory(…);
actual_computation;	

startDMATransfer(…);
}

}

GPU GPU	
RAM

CPU CPU	
RAM

PCIe

10GbE	
FPGA	
NIC

start

cuMemHostRegister(…)	
using	﻿CU_MEMHOSTREGISTER_IOMEMORY	flag



Dec	21st 2016

IOMemory mapping

Little	to	no	improvements,	but	CPU	free	for	
other	kind	of	computations

FPGA	NIC

Host	
ram

CPU	app

Camera	control
FPGA	control
Meas.	Comp.

GPU	ram GPU

Camera	protocol
handler

DMADMC	protocol
handler

DMA

UDP	
Offload
Engine

PC
I-e

	3
.0

Pixels	
ring	
buffer

DM	
com
buffer

DMA

polling	kernel

compute
kernels

start

DMA
answers

Latency
measurement

DMAmeasures

PC
I-e

	3
.0



Dec	21st 2016

Conclusion	/	Perspectives

•Using	GPUDirect and	a	persistent	kernel	allow	
efficient	data	delivery	to	the	Real	Time	Controller
•GPUDirect approach	can	be	applied	to	Supervisor	
using	interruptions	from	FPGA	for	CPU	execution	
control	(kernel	launch)

•Simulation	setup	to	benchmark	ELT	SCAO/MCAO	scales	thoroughly
•Test	with	new	hardware:	PLDA	ExpressKUS FPGA	and	Nvidia K40/80	
&	P100	GPUs.	(and	Arria10	FPGAs	in	a	near	future)
•Develop	computation	modules	on	FPGA	to	further	reduce	GPU	load

e.g.:	Slopes	computation	for	segmented	processing



Project	#671662	funded	by	European	Commission	under	program	H2020-EU.1.2.2	coordinated	in	H2020-FETHPC-2014	

Thank	you	for	your	attention

(Questions?)


