
Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014

RTC4AO 2016

Green Flash
A Real Time Controller For E-ELT

Julien BERNARD

Green Flash

● Public and private actors
– Paris Observatory
– University of Durham
– Microgate
– PLDA

● Part of Horizon 2020 : EU Research
and Innovation programme

● 3 years project
● 3,8 million €
● Involve about 30 people

● Research axes
– Real time HPC with accelerators and smart interconnects
– Energy efficient platform based on FPGA
– Real Time Controller (RTC) prototype for European – Extremely Large Telescope Adaptive

Optics (AO) system

GPU ROMA 2016

Adaptive Optics

● Compensate in real-time
the wavefront
perturbations

● Using a wavefront
sensor - WFS to
measure them

● Using a deformable
mirror – DM to reshape
the wavefront

● Commands to the mirror
must be computed in
real-time (~ms rate)

RTC AO prototype for E-ELT
● European – Extremely Large Telescope

– Next telescope generation

– 39 m diameter telescope

– 100m dome, 2800 tones structure
rotating at 360°, seismic safe (Chile)

– first light foreseen in 2024

– European project led by ESO
funded by 15 European countries

– 1.2 billion € project

SCAO / MCAO

RTC

RTC

Simple Conjugate
Adaptive Optics

Multiple Conjugate
Adaptive Optics

Wave Front Sensor 1 (10k measures) 6 (60k measures)

Deformable mirror 1 (5.3k degree of freedom) 3 (16k degree of freedom)

Frequency 1kHz 500Hz

GPU ROMA 2016

RTC concept for ELT AO

Computation : MCAO
● MCAO process

1) Calculate the pseudo-open loop measurement
vector with the two last command vector and the
interaction matrix

2) Calculate the raw tomographic vector

3) Get the vector command by smoothing the raw
vector with the last command

● Sizing :

– SCAO : 1 matrix x 10 048 x 5316 = 53 MMAC
per iteration and 53 GMACS @ 1kHz

– MCAO : 2 matrix x 60288 x 15000 = 1.8GMAC
per iteration and 1 TMACS @ 500 Hz

M⃗ ol [k]=M⃗ [k]−D(a c⃗ [k−2]+(1−a) c⃗ [k−1])

e⃗ [k]=R M⃗ o1[k]

c⃗ [k]=g e⃗+(1−g) c⃗ [k−1]

GPU sizing

● Matrix Vector Multiply –
MVM take more than 90%
of the time

● I/O bound computation
● Depends of the sustained

bandwidth of the device

OI (Operation Intensity) : number of
MACS by quantity of non cached
data byte to compute the MACS

I.E. GEMV processing in :

● f32

● f64

K20C K40 K80 P100

B
theo

208 288 240 (x2) 732

B
no ECC

175
(84%)

236
(82%)

200
(x2, 83%)

460
(62%)

B
ECC

150
(72%)

208
(72%)

173
(x2, 72%)

460
(62%)

CEIL(
CR

~B xOI
)=N

ECC K20C K40 K80 P100

Off 12 9 6 5

On 14 10 6 5Bandwidth of GPU (theoretical, real without ECC, with ECC) in giga byte per second

Number of GPU needed for the
MCAO case computed in f32

2n ²+2n
4 (n ²+3n)

≈0.50

2n ²+2n
8(n ²+3n)

≈0.25

GPU ROMA 2016

Classic implementation

GPU ROMA 2016

Persistent kernel implementation

GPU ROMA 2016

Hardware

DGX-1 server
● Ubuntu 14.04
● Dual Intel Xeon E5-2698

@ 2.2 GHz
● 8 Nvidia P100

@ 1480:715 MHz
– ECC disabled

– CUDA 8.0

GPU ROMA 2016

Test pipeline

Test on SCAO based case with

● 16 bit x 512²
pixel frame

● 2 x 5024 slopes

● 15k commands

● 1-4 GPU for computing

GPU ROMA 2016

Time measurement strategies

3 way measurements
– CUDA event
– C++ std high_resolution_clock
– CUDA clock64

GPU ROMA 2016

Result 1/2 : Scalability and jitter

Strong scalability
Constant case with 10,048 slopes x 15,000 commands

Histogram
Case with 10,048 slopes x 15,000 commands on 4 devices

Average : 0.45ms Jitter : 17µs

1 2 4
0

0,2

0,4

0,6

0,8

1

1,2

1,4

Experimental

Perfect scale

number of GPUs

tim
e

 (
m

s)

1 2 4
0

5

10

15

20

25

30

IO experimental

Sync experimental

number of GPUs

tim
e

 (
µ

s)

Result 2/2 : Sync & Intercom time

Intercommunication jitterSynchronize jitter

Average : 15µs Jitter : 8.8µs Average : 24µs Jitter : 12µs

GPU ROMA 2016

Conclusion : Persistent kernel
● Pros

– Much lower jitter

– Simpler execution stream

● Cons
– Beware of kernel mapping

– No concurrency

– Hard to debug

– Prohibited features
● No cuda library using kernel

(i.e. cuBlas)
● No cuda runtime

synchronization

– Useless features
● stream, memcpy

– No intercommunication
through QPI

Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014

Thank you

Question ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 19

