

#### RTC4AO 2016

### Green Flash

#### A Real Time Controller For E-ELT Julien BERNARD



Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014



#### Green Green Flash

- Public and private actors
  - Paris Observatory
  - University of Durham
  - Microgate
  - PLDA



Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique







- Part of Horizon 2020 : EU Research and Innovation programme
- 3 years project
- 3,8 million €
- Involve about 30 people
- Research axes
  - Real time HPC with accelerators and smart interconnects
  - Energy efficient platform based on FPGA
  - Real Time Controller (RTC) prototype for European Extremely Large Telescope Adaptive Optics (AO) system





# Green Adaptive Optics

- Compensate in real-time the wavefront perturbations
- Using a wavefront sensor - WFS to measure them
- Using a deformable mirror – DM to reshape the wavefront
- Commands to the mirror must be computed in real-time (~ms rate)



GPU ROMA 2016 Vorente Durham MICROSOGATE Paris

# Flash

## **Green** RTC AO prototype for E-ELT

- European Extremely Large Telescope
  - Next telescope generation
  - 39 m diameter telescope
  - 100m dome, 2800 tones structure rotating at 360°, seismic safe (Chile)
  - first light foreseen in 2024
  - European project led by ESO funded by 15 European countries
  - 1.2 billion € project







|                   | Simple Conjugate<br>Adaptive Optics | Multiple Conjugate<br>Adaptive Optics |
|-------------------|-------------------------------------|---------------------------------------|
| Wave Front Sensor | 1 (10k measures)                    | 6 (60k measures)                      |
| Deformable mirror | 1 (5.3k degree of freedom)          | 3 (16k degree of freedom)             |
| Frequency         | 1kHz                                | 500Hz                                 |







### Green RTC concept for ELT AO



![](_page_5_Picture_3.jpeg)

GPU ROMA 2016

![](_page_6_Picture_0.jpeg)

## Green Computation : MCAO

- MCAO process
  - 1) Calculate the pseudo-open loop measurement vector with the two last command vector and the interaction matrix

 $\vec{M}_{ol}[k] = \vec{M}[k] - D(a\vec{c}[k-2] + (1-a)\vec{c}[k-1])$ 

2) Calculate the raw tomographic vector

 $\vec{e}[k] = R \vec{M}_{o1}[k]$ 

3) Get the vector command by smoothing the raw vector with the last command

 $\vec{c}[k] = q\vec{e} + (1-q)\vec{c}[k-1]$ 

- Sizing :
  - SCAO : 1 matrix x 10 048 x 5316 = 53 MMAC per iteration and 53 GMACS @ 1kHz
  - MCAO : 2 matrix x 60288 x 15000 = 1.8GMAC per iteration and 1 TMACS @ 500 Hz

![](_page_6_Picture_12.jpeg)

![](_page_7_Picture_0.jpeg)

- Matrix Vector Multiply MVM take more than 90% of the time
- I/O bound computation
- Depends of the sustained bandwidth of the device

![](_page_7_Figure_4.jpeg)

Bandwidth of GPU (theoretical, real without ECC, with ECC) in giga byte per second

![](_page_7_Picture_6.jpeg)

OI (Operation Intensity) : number of MACS by quantity of non cached data byte to compute the MACS

I.E. GEMV processing in :

• f32 
$$\frac{2n^2+2n}{4(n^2+3n)} \approx 0.50$$
  
• f64  $\frac{2n^2+2n}{8(n^2+3n)} \approx 0.25$ 

Number of GPU needed for the MCAO case computed in f32

| ECC | K20C | K40 | K80 | P100 |
|-----|------|-----|-----|------|
| Off | 12   | 9   | 6   | 5    |
| On  | 14   | 10  | 6   | 5    |

Green Flash

#### **Classic implementation**

![](_page_8_Figure_2.jpeg)

![](_page_9_Picture_0.jpeg)

#### Persistent kernel implementation

![](_page_9_Figure_2.jpeg)

![](_page_10_Picture_0.jpeg)

#### Green Hardware

![](_page_10_Figure_2.jpeg)

DGX-1 server

- Ubuntu 14.04
- Dual Intel Xeon E5-2698
  @ 2.2 GHz
- 8 Nvidia P100
   @ 1480:715 MHz
  - ECC disabled
  - CUDA 8.0

![](_page_10_Picture_9.jpeg)

![](_page_11_Figure_0.jpeg)

• 1-4 GPU for computing

![](_page_11_Picture_2.jpeg)

GPU ROMA 2016

![](_page_12_Figure_0.jpeg)

![](_page_13_Picture_0.jpeg)

### Green Result 1/2 : Scalability and jitter

#### Strong scalability

Constant case with 10,048 slopes x 15,000 commands

#### Histogram

Case with 10,048 slopes x 15,000 commands on 4 devices

Average : 0.45ms Jitter : 17µs

![](_page_13_Figure_7.jpeg)

# Result 2/2: Sync & Intercom time

![](_page_14_Figure_1.jpeg)

![](_page_15_Picture_0.jpeg)

## Conclusion : Persistent kernel

Pros

GPU ROMA 2016

- Much lower jitter
- Simpler execution stream
- Cons
  - Beware of kernel mapping
  - No concurrency
  - Hard to debug
  - Prohibited features
    - No cuda library using kernel (i.e. cuBlas)
    - No cuda runtime synchronization
  - Useless features
    - stream, memcpy
  - No intercommunication through QPI

l'Observatoire Durham MICRO GATE PLDA

![](_page_16_Picture_0.jpeg)

#### Thank you

#### **Question**?

![](_page_16_Picture_3.jpeg)

Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014