
Performance of ELT-size AO RTC on GPUs
within the framework of DARC

Urban Bitenc
Durham University

Workshop on Real-Time Control for Adaptice Optics, 4th edition
2016 Dec 20

 2

Contents

● Implement the AO RTC pipeline on GPUs
within DARC

● Answer some questions:
– How fast does it run on a GPU?

– How much jitter?

– How fast does it run on two, three, four GPUs?

– Understand the limitations, the bottleneck(s)

 3

Durham AO Real-Time Controller

● Developed by Alastair
Basden

● Used on-sky with CANARY

● Key: horizontal processing
strategy - make use of
pipelineability

– Process chunks of data
as soon as they arrive

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

thread 9

 4

The challenge: 40m-telescopes

My test case:
● SCAO, 80x80
● 16x16 pixels

● Matrix-vector

multiplication:

9248 x 4828

● Goal: process

1000 frames per second

 5

Without acceleration hardware

● Running DARC on a CPU:
– up to 160 frames per second: too slow

==> accelerate using GPUs

FREQUENCY
160 fps

JITTER:
RMS = 12µs

 6

To use GPU: copy pixel data

● Standard way:
– camera --> CPU DRAM --> GPU DRAM

– advantage: simpler

– disadvantage: slower, more jitter

● Ideal way:
– camera --> GPU DRAM (“GPU direct”)

– advantage: faster, less jitter

– disadvantage: no commercial solution available
(Do It Yourself)

CAMERA CPU

GPU

CAMERA

CPU

GPU

 7

Using only standard CUDA tools
CPU GPU

- Get data from camera

- copy data to GPU
- send commands to
 GPU to process the
 data

- copy the result from
 GPU to the CPU

- send result to the
 deformable mirror

- process the data and
 store the result

 8

Copying pixel data

● Use only standard CUDA tools
● Process the pixel data in parallel to copying

Nvidia Visual Profiler

CAMERA CPU

GPU

N
C
 = 1: no data copied in parallel to processing

N
C
 = 2: half the data copied in parallel to processing

time saved

N
C
: number of data chunks

 9

Running on several GPUs

● Synchronisation in the end

GPU 2
stream 1
stream 2
stream 3

GPU 1
stream 1
stream 2
stream 3

CPU

GPU Synchronization using cudaEventQuery

CPU

Synchronization using cudaEventSynchronize

SLOWER

GPU 2
stream 1
stream 2
stream 3

GPU 1
stream 1
stream 2
stream 3

● Nvidia Visual Profiler was very helpful

 10

Reduce jitter (1)

● Linux kernel: use lowlatency kernel, not generic
lowlatency kernel,
GTX 580
NO OUTLIERS

generic kernel,
GTX 780
SEVERAL LARGE OUTLIERS

 11

Reduce Jitter (2)

● Switch off power saving of the CPU:

cpu frequency scaling_governor = performance, not
ondemand

ondemand
ondemand
performance

Exactly the same
settings; the
computer
sometimes just
gets a bit lazy...

 12

Jitter (3)
● Lock the threads onto the right

hyper-threads

The CPU has 20 cores, 40 hyper-threads;
some are better connected to the GPU
than others.

● Contributions to jitter:

– CPU (organizing threads,
launching kernels): 9 µs

– copy pixels to GPU: 11 µs

– GPU processing (kernel
execution): 22 µs

– Note: GPU processing is
the biggest contribution

Time needed for copying data to the GPU:

JITTER:
RMS = 42µs

 13

4 GPUs
2.000.000 cycles

1570 fps,
32 µs RMS

JITTER: 20-30 µs RMS, 1-2 outliers in a million
Source of jitter:
- 50%: processing on the GPU
- 25%: copying data to GPU
- 25%: CPU thread management

Jitter result

 14

Optimize the parameters
● MAXIMIZE MEAN FRAME TIME, MINIMIZE JITTER

● CPU threads: - NC - how many (6,7,...,21)

 - on which hyper-thread they should run

● CPU: mutex_lock when launching kernels (yes or no)

● Calibration kernel: number of threads per block (32,64,...,512)

● MVM kernel: - number of threads per block (32,64,96,...,512)

 - size of loop unroll (15,16,...,125)

 - copy slopes to shared memory or leave in global?

 - use an “if” clause to stop from processing invalid data (yes or no)

● GPU: - cudaStreamSynchronize (improves speed for fermi GPUs)

 - end synchronization

● Run on several GPUs

● Additional options:

– operating system (generic or lowlatency)

– log on as root or as a normal user

– copy pixels to GPU or not copy pixels to GPU

– balance between speed and jitter?

 15

Optimize: go fast, low jitter
● Parameters:

– number of CPU threads,

– loop unroll size in MVM

● Two scenarios:

7%

11
0%

TRADE-OFF
WIN-WIN

different numbers
of CPU threads

different numbers
of CPU threads

1 GPU 2 GPUs

loop unroll size in MVM

fr
am

es
 p

er
 s

ec
o

n
d

 16

Fastest is not always best

 17

670 fps

28 µs
RMS

800 fps

23 µs
RMS

1100 fps

20 µs
RMS

1375 fps

1570
fps1910

fps

32 µs
RMS

35 µs
RMS

24 µs
RMS

full lines: complete process
dashed lines: without copying pixel data from CPU to GPU

Results

 18

Key findings

● using 1 K80 card (i.e. 2 GPUs) it runs at 1.1 kHz

● copying pixels slows you down by 10-20% and
adds about 20% to jitter

● Using several GPUs:

– 2 GPUs: speed of 1.6 instead of 2.0
● (speed up of 1.8 if not copying pixels)

– 4 GPUs: speed up 2.3 instead of 4.0

– fundamental limitation: kernel launching time
● when running on 2 GPUs, jitter does not increase

● Also when not copying pixel data, splitting into
chunks makes calculation faster.

 19

Results

● Correlation wavefront sensing (for laser
guide-stars)

Number of
GPUs

frames per
second

one GPU 282 fps

two GPUs 456 fps

four GPUs 541 fps

 20

Conclusions
● DARC (Durham RT Controller) using GPUs and standard

CUDA tools

● Data copied to GPU in parallel to processing

● 80x80 SCAO on a single K80 card (2 GPUs):

1100 frames per second

● 4 GPUs: 1570 frames per second

● Jitter: RMS = 30 µs

– one or two outliers (5ms) in a million
● Good candidate for ELT RTC

● SPIE 9909, 99094S (2016); submitted to Journal for Real-
Time Image Processing

 21

 22

About the bottlenecks

● The optimal nThreads is a balance between
three trends:

– data copying time

more threads --> faster

– pipeline base time:

● launching GPU kernels
● managing of CPU threads

more threads --> slower

– GPU utilisation

more threads --> faster

NO DATA COPYING

 23

If K80 gets too hot, it slows down

 24

Life is hard

● Stuff is not repeatable

Feb 1
Mar 2
Mar 3

Distribution of times
needed to
process one
frame.

ondemand
ondemand
performance

Exactly the same
settings; the
computer
sometimes just
gets a bit lazy...

 25

Life is hard

● There is stuff you can not understand:

The usual behaviour Behaviour when Saavi is running her
simulation on the computer

 26

Life is hard
● The rule you've found does not apply to all the stuff:

mutex_lock is
GOOD

mutex_lock is
GOOD

mutex_lock is
GOOD

mutex_lock is
BAD

Just like car insurance...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

