

Green Flash

High performance computing for real-time science

A status update ... (a.k.a. teaser slides)

AO4RTC4 workshop, Paris 2016

Green AO RTC concept

Introduction to Green Flash

- Program objectives: 3 research axes
 - 2 technological developments and 1 validation study
- Real-time HPC using accelerators and smart interconnects
 - Assess the determinism of accelerators performance
 - Develop a smart interconnect strategy to cope for strong data transfer bandwidth constraints
- Energy efficient platform based on FPGA for HPC
 - Prototype a main board, based on FPGA SoC and PCIe Gen3
 - Cluster such boards and assess performance in terms of energy efficiency and determinism
- AO RTC prototyping and performance assessment
 - Assemble a full functionality prototype for a scalable AO RTC targeting the MAORY system
 - Compare off-the-shelf solutions based on accelerators and new FPGA-based concept

What this is about ... really

- Find the best trade-off for ELT sized AO systems RTC
 - Comprehensive assessment of existing technologies
 - Development of new custom solutions for comparison
 - Propose new development processes to reduce cost and increase maintainability
- Build a full featured RTC prototype at the largest scale possible
 - Technology down-selection from a number of criteria : performance, cost, compliance to standards, obsolescence, maintainability
 - State of the art system to be assessed in the llab, with a simulator

Project timeline

Good convergence with H2020 ETP4HPC / E-ELT project timeline

Green AO RTC concept

AO RTC concept : RT simulator

Real-time simulator

Emulation interface to RTCS

Concept developed @ Durham, see Andrew Reeves presentation

Real-time simulator

- Several simulation tools :
 - Low level functional test with slow python-based simulation (SOAPy)
 - High-level tests with fast end-to-end simulation (COMPASS)
 - Performance / determinisn assessment with HW pixel generator

Real-time simulator

- Using COMPASS for E2E should provide a scalable solution over the long term
 - Execution times from F. Ferreira

Green AO RTC concept

AO RTC concept : data pipeline

RT data pipeline with accelerators

 Study the achievable perf. on GPUs

Memory transfe 3.9e+02 GB Ctrl Clock Min Max Jitter Computation rate Average 2e+02 GFlops RTC 1 device.s device 0.51 ms0.5 ms0.52 ms23 us 6.3e+02 GB compute O 3.1e+02 GFlops RTC 2 device.s device 0.32 ms0.31 ms0.33 ms12 us

10 device

(5)

Slave compute

Send frame to each GPUs

Slave compute

Compute assigned slopes & MVM

Sum all elements of command vectors

Send command vector to all IO device

Send command vector to master compute device

Slave compute

RT data pipeline with accelerators

Prototype using latest genration GPU cluster

 Concept studied at LESIA, see talks by Julien Bernard & Maxime Lainé

MICROGATE

Durham

Observatoire LESIA

19/12/2016

RT data pipeline with accelerators

- Intel Xeon Phi
- First results on **Knights Corner** (10k meas. vector)

OPTION 1: RTC: Simulator: Supervisor: 4x10G ↑ 2x10G OPTION 2: Simulator: RTC: Supervisor: 2x10G 4x10G 16-bit 4x10G ↑ 2x10G 2x10G 4x10G 4x10G 16-bit

Pipeline

7.0

7.5

8.0

 Concept studied at Durham, see talk by David Jenkins

RT data pipeline with new FPGA microserver

Exploring new concepts for HPC

RT data pipeline with new FPGA microserver

 2 boards concepts : standard (accelerator) / standalone (w/ SOC : microserver)

RT data pipeline with new FPGA microserver

Boards are becoming real @ Microgate!

Green AO RTC concept

AO RTC concept : smart interconnect

Smart interconnect concept

- Collaboration between PLDA and LESIA
- Proof of concept on a SCAO ready prototype

Smart interconnect architecture

Smart interconnect concept

Eased developrocess
using the
QuickPlay
tool from
PLDA

Green AO RTC concept

AO RTC concept: supervisor

Supervision for tomographic AO

New, optimized supervision pipeline

Collaboration LESIA + KAUST (KSA)

Green AO RTC concept

AO RTC concept : SW & MW

SW / MW stack

- Under development in Paris & Durham
- Run a standard HPC ecosystem on the prototype boards and clusters
- Performance assessed w/r AO application (mainly linear algebra)

Middleware options

Role	Option 1	Option 2
Data Pipeline	Zero-MQ	MPI
Command/Control	Zero-MQ	ICE
Telemetry	DDS	ICE

 Under study in Durham

 See Eddy Younge talk on wednesda

Middleware

Middleware

Project on track

- PDR occurred in Jan. 2016 with feedback from community
- Prototyping activities have started with preliminary results (see per WP presentation)
- Prototyping mid-term review scheduled on Feb. 1rst 2017

Collaborations initiated

- Good feedback from the community on different aspects (HPC + instrumentation)
- Evaluate the convergence and minimize additional effort

More work needed on dissemination

- Populating public website
- Contributions to international conference and publications

Already enhancing the readiness level of commercial solutions

- Contribution to QuickPlay development
- Design of an innovative FPGA board (see Roberto's presentation)

