

PIC simulations of relativistic magnetic reconnection

Benoît Cerutti CNRS & Univ. Grenoble Alpes, France

Simulating the evolution and emission of relativistic outflows, Meudon, November 28-29, 2019

$$\sigma = \frac{B_0^2}{4 \pi nmc^2}$$

Relativistic reconnection: $\sigma > 1$

Relativistic Alfvén speed

$$V_A = c \sqrt{\frac{\sigma}{1+\sigma}} \approx c$$

Dissipation of magnetic energy => relativistic particles !

$$\sigma = \frac{B_0^2}{4 \pi nmc^2}$$

Relativistic reconnection: $\sigma > 1$

Relativistic Alfvén speed

$$V_A = c_{\sqrt{\frac{\sigma}{1+\sigma}}} \approx c$$

Dissipation of magnetic energy => relativistic particles !

Possible astrophysical applications:

Pulsar Wind Nebulae (Crab flares)

0~0.1-1

$$\sigma = \frac{B_0^2}{4 \pi nmc^2}$$

Relativistic reconnection: $\sigma > 1$

Relativistic Alfvén speed

$$V_A = c \sqrt{\frac{\sigma}{1+\sigma}} \approx c$$

Dissipation of magnetic energy => relativistic particles !

Relativistic magnetospheres (pulsars, magnetars, Kerr black holes)

Possible astrophysical applications:

Pulsar Wind Nebulae (Crab flares)

♂~0.1-1

© ESO/L.Calçada

© MAGIC collab.

$$\sigma = \frac{B_0^2}{4 \pi nmc^2}$$

Relativistic reconnection: $\sigma > 1$

Relativistic Alfvén speed

$$V_A = c \sqrt{\frac{\sigma}{1+\sigma}} \approx c$$

Dissipation of magnetic energy => relativistic particles !

Relativistic magnetospheres (pulsars, magnetars, Kerr black holes)

© ESO/L.Calçada

Black Hole © MAGIC collab.

Possible astrophysical applications:

Pulsar Wind Nebulae (Crab flares)

σ~0.1-1

Reconnection : A change of magnetic topology

[See reviews by Zweibel & Yamada, 2009, Kagan et al. 2015]

Usual PIC setup: The Harris sheet

A long thin current sheet is **tearing** unstable

[Zelenyi & Krasnoselskikh 1979, Zenitani & Hoshino 2007, Pétri & Kirk 2007]

[*Cerutti*+2012]

Space-time diagram: a sequence of mergers

The kink dominates the early stages of the layer...

- ... but the tearing controls the later evolution, so that $3D \approx 2D$!
- => Non-thermal particle acceleration still efficient in 3D without guide field

[Sironi & Spitkovsky 2014, Werner & Uzdensky 2017]

The flow velocity structure

[Kagan+2015]

Relativistic bulk flows

Large box with open boundaries

Efficient particle acceleration

[Zenitani & Hoshino; Jaroschek et al.; Bessho & Bhattacharjee; Pétri & Lyubarsky; Sironi & Spitkovsky; Liu et al., Cerutti et al.; Kagan et al., Guo et al., Werner et al.]

Non-thermal particle acceleration is <u>efficient</u> for highly magnetized plasmas (σ >>1), need for large computational box and late time evolution of the system. Hard distributions at large sigmas.

Physical origin of the spectra still debated and poorly understood.

Particle acceleration at X-points

Sample of 150 particle orbits

[Cerutti+2013]

Particle acceleration at X-points

[Sironi & Spitkovsky 2014]

[see also Larrabee et al. 2003; Bessho & Bhattacharjee 2012]

The final particle **energy gain** depends how close from the **X**-**point** they are injected, leads to a **wide distribution** in energy.

Plasmoid mergers

[See also Oka et al. 2010 (non relativistic)]

Extra particle acceleration by the "anti-reconnection electric field" between merging islands: increase the maximum energy.

Saturation of the maximum energy?

Spectral fitting shows a saturation of $\gamma_{max} \sim 4\sigma!$

Limits set by energetic constraints because hard spectra (<2) => Bad news for astrophysical applications where or rarely very large

Saturation of the maximum energy?

[Petropoulou & Sironi + 2018]

Are PIC simulations essential after all?

... At X-points yes! Fast acceleration by $\mathbf{E}_{\prime\prime}$

... but if max energy dominated by slow MHD process, X-point acceleration only injection mechanism.

=> Ironically, my feeling is that future progress could be done with resistive MHD simulations with test particles with a larger scale separation.

[see e.g., Mignone et al. 2018]

Reconnection in pulsar magnetospheres

[*Cerutti*+2015]

Equatorial current sheet of an inclined rotator

Bogovalov 1999

View in the equatorial plane

Cerutti & Philippov 2017

Pulsar spin down and dissipation

=> Energy transferred to energetic particles and radiation!

The FROMTON project

Magnetic reconnection and particle acceleration proceeds in the wind => Complete dissipation before the termination shock

0.25 $\chi\!=\!30^{\rm o}$ 0.20 $\chi\!=\!60^{\rm o}$ 0.15[°] $\chi = 85^{\circ}$ 0.10 0.05 0.00 10 20 30 40 50 [Cerutti, Philippov & Dubus in prep] $r/R_{
m LC}$

Merging binary pulsar

Interacting magnetospheres: an electromagnetic precursor to merging neutron star?

Merging binary pulsar: PIC simulations

Establishement of the magnetospheres

Inspiral begins

[Crinquand, Cerutti & Dubus 2018]

Driven reconnection in the inspiral phase. Reconnection of the poloidal field => Strong magnification of dissipation

A detectable precursor?

2 orders of magnitude gamma-ray luminosity increase during the inspiral ! Still **too weak to be detected.** Go to 3D + orbital motion. Could produce a (non-repeating) fast radio burst ?

Black hole magnetospheres: Next talk by Benjamin Crinquand

Summary relativistic reconnection

- Fast, acceleration scales linearly with time, to be compared with shocks diffusive time ($t^{1/2}$).
- Is **efficient** for **highly magnetized** plasmas, $\sigma >>1$. Works well where shocks fail.
- Non-thermal particle spectrum typically harder than 2, and saturation of γ_{max} ~0
- But **slower acceleration** and **spectral steepening** at large timescales => Does γ_{max} saturate? We may consider hybrid simulations to go further (resistive MHD + test particles)
- Applications to **AGN jets**, **PWN**, **pulsars & black hole magnetospheres**. Gamma-ray flares in blazars and Crab could be a direct demonstration of relativistic reconnection.