Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

GRMHD modelling and radiative transfer The case of M87

Gaëtan Fichet de Clairfontaine

LUTH, Observatoire de Paris

28 november 2019

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

- 1 Introduction
- 2 Set up
- 3 GRMHD results
- 4 Application to M 87
- 5 Conclusion and prospects

Figure: *Kelvin-Helmoltz* instabilities at the interface between the jet and the ambient medium.

Introduction

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Some motivations :

- Link between the radiative process and the acceleration process in the radio band ?
- Origin of observed radio variability ? (~ month)

A plausible scenario ?

➤ Interaction of an ejecta with the structure in stationary shocks in the relativistic jet.

Figure: Walker et al, [2018] & Acciari et al. [2009].

Overview

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

GRMHD modelling and radiative transfer :

- The MPI-AMRVAC code [Keppens et al. (2012)] for the GRMHD simulations;
- ② A post-processing in Python to calculate the synchrotron flux component of the jet (injection and emission + relativistic effects);
- Extract data to form synchrotron flux map and integrate the total flux for the light curve.

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

GRMHD equations :

- Resolution of the GRMHD equations for a relativistic plasma in *Minkowski* space-time;
- Numerical resolution with a conservative scheme (HLLC *Riemann* solver).

/	$\partial_t \left(\Gamma \rho \right) + \nabla . \left(\rho \Gamma \mathbf{u} \right) = 0$
	$\partial_t \left(\Gamma^2 h \mathbf{u} + \mathbf{E} \times \mathbf{B} \right) + \nabla \cdot \left(\Gamma^2 h \mathbf{u} \mathbf{u} - \mathbf{E}\mathbf{E} - \mathbf{B}\mathbf{B} + p \mathbf{I} \right) = 0$
	$\partial_t \left(h \Gamma^2 - p - \Gamma \rho + \frac{E^2 + B^2}{2} \right) + \nabla \left((h \Gamma^2 - p - \Gamma \rho) \mathbf{u} + \mathbf{E} \times \mathbf{B} \right) = 0$
	$\partial_t \mathbf{B} + \nabla \cdot (\mathbf{u}\mathbf{B} - \mathbf{B}\mathbf{u}) = 0$

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects Simulation box :

 An over-pressure inner jet allows to obtain an standing shocks structure [Hervet et al. (2017)];

 The adaptive mesh allow us to resolve more precisely certain regions.

Figure: Schematic representation of the simulation box and its adaptive mesh (not at scale).

Post-processing : injection of the relativistic electrons

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects Power law distribution :

For each cell, we injected the relativistic electrons following [Gomez et al. (1995)] :

 $N(\Gamma) d\Gamma = K\Gamma^{-p} d\Gamma$

Valid in $\Gamma_{min} < \Gamma < \Gamma_{max}$ with :

$$K = \left[\frac{e_{\text{th},e}(p-2)}{1-C_{\text{E}}^{2-p}}\right]^{p-1} \left[\frac{1-C_{\text{E}}^{1-p}}{n_{e}(p-1)}\right]^{p-2}$$

→ We fixed $\Gamma_{min} = 1$ and $\Gamma_{max} = 10^3$: we didn't considered the cooling of the electrons.

Post-processing : emission and relativistic effects 8

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Emissivity and self-absorption :

➤ Using approximations for the synchrotron emissivity and absorption coefficient to reduce CPU time (see Katarzyński et al. [2001])

In each cell :	Transformation (Rybicki and Lightman [1979]) :
 Estimation of the different parameters in the absolute frame; 	$j_{\nu} = \delta_{d}^{2} j_{\nu'}$: emissivity
 The angle θ_{obs} implies a Doppler beaming effect; 	$\alpha_{\nu} = o_{d}^{-} \alpha_{\nu'}$: self-absorption $\tau_{\nu} = \tau_{\nu'}$: optical depth
× Time travel delay in the jet is not taken into account yet.	$\delta_{d} = (\Gamma(1 - \beta \cos(\theta_{obs}))^{-1})$

Post-processing : synchrotron flux estimation

Gaëtan Fichet de Clairfontaine

L

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

$$I_{\nu}(\tau_{\nu}) = \underbrace{I_{\nu}(0) e^{-\tau_{\nu}}}_{\text{i-th cell}} + \underbrace{\int_{0}^{\tau_{\nu}} \frac{j_{\nu}}{\alpha_{\nu}} |_{\tau_{\nu}'} e^{-(\tau_{\nu} - \tau_{\nu}')} d\tau_{\nu}'}_{\text{i+1-th cell}}$$

 $\bigotimes_{z} \bigvee_{\delta_{y}}^{x} \bigvee_{i \quad i+1}^{y}$

Estimation of the synchrotron flux :

$$F_{\nu} = \frac{S_{\mathsf{em}}}{d_l^2} \left(1 + z\right) I_{\nu}$$

With the cosmological distance :

$$d_{\rm I} = \frac{2c}{H_0} \left(z + 1 - \sqrt{z+1} \right)$$

Hydrodynamic case :

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Figure: Snapshot: structured hydrodynamic jet with one ejecta. Pressure map on the left, density map on the right. Units on x- and y-axis in 0.1 pc.

Hydrodynamic case :

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

We assumed :
$$B_{ ext{turb}} = \sqrt{rac{\epsilon_{ ext{B}} p}{\gamma - 1}}$$
 with $\epsilon_{ ext{B}} = 0.1$

Figure: Synchrotron flux map with one ejecta with $\theta_{obs} = 90^{\circ}$ and $v = 10^{9}$ Hz.

Figure: Light curve of the observed radio flux associated with the passage of an ejecta.

Poloidal case :

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Figure: Snapshot: structured poloidal jet with an ejecta. Pressure map on the left, density map on the right. Units on x- and y-axis in 0.1 pc.

Poloidal case :

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Figure: Synchrotron flux map with one ejecta with $\theta_{obs} = 90^{\circ}$ and $v = 10^{9}$ Hz.

Figure: Light curve of the observed radio flux associated with the passage of an ejecta.

Toroidal case :

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Figure: Snapshot: structured toroidal jet with an ejecta. Pressure map on the left, density map on the right. Units on x- and y-axis in 0.1 pc.

1.8

Figure: Synchrotron flux map with one ejecta with $\theta_{obs} = 90^{\circ}$ and $v = 10^{9}$ Hz.

250

200

150

0

0 50 100

Time (year) Figure: Light curve of the observed radio flux associated with the passage of an ejecta.

600

800

400

200

Application to M 87 : observational constraints 13

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Figure: Constraint on the angle θ_{obs} (F. Mertens et al, [2016]).

Figure: Constraint on the opening angle θ_{app} (Walker et al, [2018]).

Magnetic configuration :

We assumed a purely toroidal configuration at the base of the jet (Walker et al, [2018]).

Application to M 87 : results

density

3,2e+02

pressure

Figure: Observed radio light curve for M87 with one ejecta in the observer frame. (orange: data from VLBA at 43 GHz; blue: our simulation).

Conclusion and prospects

Gaëtan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Conclusion :

- X transverse structure of the jet greatly limits the lateral energy dissipation of the ejecta;
- X magnetic configuration has been found to play an important role;
- first application to a radio flare from M 87 looks promising and was the subject of a poster and a proceeding.

Prospects :

- take into account the light travel delay and the radiative loss;
- extend the model to other wavebands (X-ray, γ -ray band) to explain the other counterparts in the flare of 2008.

Gaetan Fichet de Clairfontaine

Introduction

Set up

GRMHD results

Application to M 87

Conclusion and prospects

Thank you for your attention. Questions ?

Annexe

Gaëtan Fichet de Clairfontain

- More context
- Standing and mobile shocks
- Magnetic structure
- Relativistic effects
- Approximations on the synchrotron emission :
- More on the postprocessing

6 More context

- 7 Standing and mobile shocks
- 8 Magnetic structure
- 9 Relativistic effects
- **10** Approximations on the synchrotron emission :
- **11** More on the post-processing

Context

Gaëtan Fichet de Clairfontaine

More context

- Standing and mobile shocks
- Magnetic structure
- Relativistic effects
- Approximations on the synchrotron emission :
- More on the postprocessing

radio-loud AGN :

- The luminosity can reach $L_{\rm tot} \sim 10^{47} {\rm ~erg/s};$
- Non thermal emission from the radio band to the high energy gamma band;
- Multi-wavelengh observations programs.

Figure: Observations map in radio / optical band (Perlman et al. [1999]) and in X band (Marshall et al. [2002]) of the M 87 jet.

Standing shocks :

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Figure: Schematic representation of the standing shocks position constraint by the radius of the jet r_n and the angle β (Hervel et al, [2017]).

Shocks structure :

- > Simple recollimation shocks structure : $r_n \propto k_n$;
- More complex structure in the reality : in-homogeneity, external component, etc.

Standing shocks :

4

Compression wave of the ejecta :

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Magnetic structure :

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Magnetic structure influence :

- Toroidal (along φ): existence of a radial magnetic tension;
- Poloidal;
- Hydrodynamic.

Magnetic structure :

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Magnetic structure influence :

Toroidal;

- Poloidal (along z) : existence of a magnetic pressure (along r) implying a radial magnetic tension;
- Hydrodynamic.

Magnetic structure :

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Magnetic structure influence :

- Toroidal;
- ➤ Poloidal;
- Hydrodynamic : turbulent magnetic component ?

Figure: Radio polarimetry map at the base of the M 87 jet (Perlman et al, [1999]).

The other relativistic effects :

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Figure: Relativistic geometric deformation of a square cell (Ghisellini [2012]).

Figure: Light travel delay (Chiaberge & Ghisellini [2018]).

Synchrotron emission following (Katarzynski et al, [2001] :

8

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximation on the synchrotron emission :

More on the postprocessing Approximation of the radiated power by an electron P'_{syn}^{1} (Chiaberge et al, [1999]) :

$$P_{\mathsf{syn}}'(\nu',\Gamma) \sim \frac{3\sqrt{3}\sigma_T c U_{\mathsf{B}}}{\pi v_{\mathsf{B}}} c_1 t^{c_2} \exp(-c_3 t)$$

With :

Assumption on P'_{syn} :

$$U_{\rm B} = \frac{B^2}{8\pi} \quad t = \frac{\nu'}{3\Gamma^2 \nu_{\rm B}} \quad \nu_{\rm B} = \frac{eB}{2\pi m_{\rm e}c}$$

Where *B* is the magnetic field intensity, $c_1 = 0.78$, $c_2 = 0.25$ and $c_3 = 2.175$.

¹This radiated power is averaged over an isotropic distribution of θ .

Synchrotron emission following (Katarzynski et al, [2001]) :

9

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximation on the synchrotron emission :

More on the postprocessing

An example : synchrotron emissivity

We can re-write :

$$j_{\nu'}(\nu') \approx \frac{9\sigma_{\rm T} c U_{\rm B} c_1}{24\pi^2 \nu_{\rm B}} \sqrt{\frac{\nu'}{\nu_{\rm B}}} \int_{t_{\rm min}}^{t_{\rm max}} N\left(\sqrt{\frac{\nu'}{3t\nu_{\rm B}}}\right) t^{c_2 - 3/2} \exp(-c_3 t) {\rm d}t$$

Where :

$$t_{\min} = \frac{\nu'}{3\Gamma_{\min}^2 \nu_{\rm B}} \qquad t_{\max} = \frac{\nu'}{3\Gamma_{\max} \nu_{\rm B}}$$

Synchrotron emission following (Katarzynski et al, [2001]): 10

Post-processing : code units **vs** physical

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Jet power :

L

_{jet} =
$$(\Gamma h - 1)\Gamma \rho_{\text{norm}} \eta_{\rho} R_{\text{norm}} \pi \beta c \approx \epsilon_{\text{L}} \times 10^{46} \text{ erg/s}$$

Normalized quantities :

• $R_{norm} \equiv 0.1 \text{ pc}$

•
$$v_{norm} \equiv c$$

- $n_{\text{norm}} \equiv \rho_{\text{norm}} / m_{\text{p}}$
- $p_{\text{norm}} \equiv \rho_{\text{norm}} c^2$

•
$$B_{\text{norm}} \equiv \sqrt{8\pi p_{\text{norm}}}$$

 $\rightarrow t_{norm} = 10 \times R_{norm} / c \approx 3.26$ years

Free parameters :

- ϵ_L : fraction of L_{jet} in the inner jet;
- η_{ρ} : density ratio between the inner jet and the ambient medium.

Post-processing : code units **vs** physical

Gaëtan Fichet de Clairfontaine

More context

Standing and mobile shocks

Magnetic structure

Relativistic effects

Approximations on the synchrotron emission :

More on the postprocessing

Normalized quantities :

- $R_{\text{norm}} \equiv 0.1 \text{ pc}$
- $v_{norm} \equiv c$
- $n_{\rm norm} \equiv \rho_{\rm norm} / m_{\rm p}$
- $p_{\text{norm}} \equiv \rho_{\text{norm}} c^2$
- $B_{\text{norm}} \equiv \sqrt{8\pi p_{\text{norm}}}$

Physical quantities :

• $n_{\text{phys}} = n_{\text{code}} \times n_{\text{norm}}$

11

- $p_{\text{phys}} = p_{\text{code}} \times p_{\text{norm}}$
- $B_{norm} = B_{code} \times B_{norm}$