

Modelling of gamma ray bursts and predictions for high-energy observations

Željka Bošnjak University of Zagreb - FER, Croatia

in collaboration with : Frédéric Daigne Institut d'Astrophysique de Paris, France

Simulating the evolution and emission of relativistic outflows - Paris, November 2019

Sub-MeV emission

Ferm/GBM observations:

hard-to-soft evolution

hardness maximum preceding the peak of the intensity hardness-intensity correlation: $E_{p,obs} \propto F(t)^{\kappa}$, $\kappa \simeq 0.4-1.2$ energy-dependent pulse asymmetry: W(E_{obs}) $\propto E_{obs}^{-a}$

High energy emission

Deviation from the usual GRB spectral models: extra component

Very high energy emission from GRBs

* MAGIC slew to the direction of GRB 190114C (z=0.42) about 50 s after the trigger and detected > 300 GeV photons for the first 20 min with a significance > 20 σ (*Mirzoyan 2019*)

* HESS started to observe GRB 180720B (z=0.65) at about 10 hr after the burst and detected 100-440 GeV photons (Ruiz-Velasco 2019)

* bright bursts: Eiso = 3×10^{53} erg and 6×10^{53} erg (Hamburg et al 2019; Frederiks et al. 2018)

* both GRBs have very high X-ray afterglow

GRB 190114C

MAGIC collaboration, 2019

Observed spectra and time profiles

Spectral properties

4-parameters "Band spectrum" E_{P}, α, β and normalization Band et al. 1993

Kaneko et al. 2006

Spectral properties

Inverse Compton scatterings in Klein-Nishina regime have an impact on the synchrotron slope

High energy emission: light curves

Bosnjak & Daigne 2014 GBM 260 keV - 5 MeV Constant Case A 8.0 անուլուլու 0.6 Case B= 0.4 0.2 Photon flux [ph/cm²/s] 0 8.0 'Sharp' initial Lorentz factor: rying 'ج Case A Varying 0.6 0.4 0.2 Case B t=0 s 500 0 0.8 0.6 0.4 0.2 400 Sharp initial Lorentz factor Case B ; constant ζ Case B ; varying ζ 300 F-200 100 0 0.8 0.6 0 Constant ejected mass flux Case B ; constant ζ Case B ; varying ζ Constant ejected mass flux: 0.4 0.2 dE/dt 🗙 Γ 0 8 2 3 6 7 5 1 4 $t_{obs} [s]$ t_{obs} [s]

High energy emission: light curves

For the delayed arrival of >100 MeV photons in *magnetic jet model* see Bosnjak & Kumar 2012

Temporal profiles: >100 MeV range

Model: in LAT (>100 MeV) energy bands both components present, synchrotron + IC

Temporal profiles: >100 MeV range

Model: in LAT (>100 MeV) energy bands both components present, synchrotron + IC

Temporal profiles: >100 MeV range

Model: in LAT (>100 MeV) energy bands both components present, synchrotron + IC

Parameter space of internal shocks:

(1) mean LF in the outflow $\overline{\Gamma}$

(2) contrast κ characterizing the amplitude of the variations in the initial distirbution of the LFs

- (3) injected kinetic power dE/dt
- (4) variability timescale τ

(5) fraction of the dissipated energy which is injected in the magnetic field $\epsilon_{\rm B}$

(6) fraction of electrons that are accelerated ζ

Comoving frame parameters:

- (1) magnetic field B'
- (2) adiabatic cooling timescale t^{dyn}
- (3) relativistic electron density ne
- (4) shape of the initial distribution of the LF of accelerated electrons

We consider the physical conditions in the shocked medium corresponding to an observer time tobs close to the peak: reference case (Γ min = 3600, ne = 1.3 x 10⁷ cm⁻³, B= 5200 G, tex = 170 s)

Q: how is the broad spectral shape affected by each of the parameters (Γ min, ne, B, tex)?

Parameter space exploration: internal shock parameters

Palmerio et al., in preparation

Parameter space of internal shocks:

(1) $\log <\Gamma > : 1.5 \rightarrow 3$ (2) $\log \kappa : 2.5 \rightarrow 10$ (3) $dE/dt: 50 \rightarrow 54$ (4) $\log \tau : -2 \rightarrow 2$ (5) $\log \varepsilon_{B:} -5 \rightarrow -0.5$ (6) $\log \zeta : -4 \rightarrow 0$

Comoving frame parameters:

(1) log B': $1 \rightarrow 4$ (2) log t`_{dyn}: $0 \rightarrow 3$ (3) log n_e: $4 \rightarrow 10$ (4) log $\Gamma_{min}: 1.5 \rightarrow 5$

Bosnjak, Daigne & Palmerio in preparation

- LAT detected GRBs are among the brightest detected by the GBM
- there are a few cases of bursts that were not particularly bright in the GBM, yet were detected by LAT (e.g. short GRBs 081024 and GRB 090531)

2nd Fermi LAT Catalog, 2019

Bosnjak, Daigne & Palmerio in preparation

Bosnjak, Daigne & Palmerio in preparation

Prompt emission in GRB 190114C: contribution to early MAGIC observations

Prompt emission in GRB 190114C: contribution to early MAGIC observations

We are using modeling tools to compute the GRB prompt emission from internal shocks in a time-dependent way in different spectral bands, including the highenergy gamma rays, to interpret new VHE observations and make predictions for future CTA observations

Further developments:

- the radiative code is currently updated accounting for the magnetic field evolution in the downstream region;
- the high energy emission will be estimated using the new assumption on the magnetic field