Gamma-ray Emission from Microquasars

Guillaume Dubus (IPAG)

nage credit \ASA / GSF(

Simulating the evolution and emission of relativistic outflows Meudon, 28-29 novembre 2019

Scaling relativistic jets

Superluminal radio jets in AGNs and X-ray binaries

Werhle + 2001

Mirabel & Rodríguez 1994

Scaling relativistic jets

Superluminal radio jets in AGNs and X-ray binaries

Werhle + 2001

Corbel+ 2002 X-ray jet emission on pc scale

Evidence for TeV electrons in microquasars

Scaling relativistic jets

Superluminal radio jets in AGNs and X-ray binaries

Werhle + 2001

Hayashida + 2012 Spectral Energy Distribution of 3C 279

Gamma-ray emission from microquasars ?

Binaries detected in (V)HE gamma rays

Dubus, Meudon 11/2019

Cyg X-1 : gamma rays from a microquasar

A 15 Msol black hole in 5.6 day orbit around 25 Msol supergiant, 2kpc Unconfirmed VHE emission, $L_{VHE} < 10^{-6} L_{edd}$ or $< 10^{-4} P_{jet}$

Hard X-ray state of Cyg X-1

High-energy gamma-ray emission when selecting hard X-ray state associated with a jet

Gamma-ray detection from 40 MeV to 60 GeV, with L~5x10³³ erg s⁻¹

Constraining jet physics with Cyg X-1

weak orbital modulation suggests SSC in clumpy jet so as to overcome star IC emission

Cyg X-3

low-mass BH (?) in 4.8 hour orbit with Wolf-Rayet

image credit NASA / GSFC

Gamma-ray detections clearly related to X-ray spectral state About 1000x more luminous in gamma rays than Cyg X-1 with L~5x10³⁶ erg s⁻¹

Linking accretion, acceleration, ejection

Corbel et al. 2012

Accretion

Ejection

Gamma-ray orbital variability

inverse Compton on star photons

GD, Cerutti, Henri 2010

Dubus, Meudon 11/2019

Gamma-ray emission model

- Emission located beyond system, ~ 3 orbital separations
- Jet is inclined, mildly relativistic, close to line-of-sight, no sign of precession in gamma

Radio modulation

- Radio orbital modulation due to free-free absorption in Wolf-Rayet wind
- Radio emission zone ~ 3 AU from system

Acceleration region ?

Recollimation shock ? Relationship to the conditions in the corona, radio jet?

Perucho et al. 2010

SS433 gamma ray at termination shock ?

HAWC Coll. 2018

• BH or NS in 13 day orbit with highly-evolved massive star, super Edddington, P_{jet}~10³⁹ erg/s

Goodall+ 2011

Dubus, Meudon 11/2019

SS433 gamma ray at termination shock ?

HAWC Coll. 2018

- BH or NS in 13 day orbit with highly-evolved massive star, super Edddington, P_{jet}~10³⁹ erg/s
- HAWC >25 TeV emission in termination region
 - > 100 TeV e- up scattering CMB (<1% Pjet)
 - pp emission unlikely (>100% Pjet)
 - particle acceleration at termination shock ?
 - GeV emission: unsettled

Gamma rays from microquasars

- Variable GeV emission from Cygnus X-3, Cygnus X-1, and (tentatively) V404 Cyg
- GeV luminosity (very) low compared to X-ray luminosity, no microblazar
- GeV emission related to X-ray state
 - link between non-thermal coronal emission & jet ?
- GeV likely emitted far in the jet on scales ~ orbital separation
 - need to avoid pair production on disc or corona X-ray photons
 - a natural outcome of upscattering stellar photons even with continuous injection
 - non-thermal injection: reconnection ? shear ? internal shocks ? recollimation shocks ?
- > 25 TeV at jet termination in **SS433**
 - jet energy injected back into ISM

Evidence for gamma rays from V404 Cyg

- 9 Msun + low mass comp. 6.4 day orbit
- super Eddington outburst in 2015
- Single Fermi-LAT detection associated with period of brightest radio/X-ray activity, notably strong jet ejection.
- Pair production opacity requires GeV emission on scale > orbit
- $L(>100 \text{ MeV}) \sim 2 \times 10^{35} \text{ erg s}^{-1}$

Loh et al. 2016