

Recent Developments in Relativistic Jets from Gamma-ray Burst Science

R. Duque, F. Daigne & R. Mochkovitch

Simulating relativistic outflows (Meudon) – Nov. 29th 2019

Introduction to jets in GRBs

Jet solve the compacity puzzle in GRBs, posed by • > 1 MeV photons escaping < 1 light-second region Flux Break Annihilation of HE light Achromatic jet-breaks: Time Initial phase $\Gamma \approx \text{cst} >> 1/\theta_0$ Deceleration Radio scintillation: $\Gamma > 1/\theta_0$ $\Gamma < 1/\theta_0$ 1400 8.5 GHz Obser 4.9 GHz 1200 22 (yLul) 1000 Flux Density 800 600 time [days since GRB 990510] 400 + UR jets natural in 200 Diffractive Refractiv "fireball" model 10^{2} 10¹ Time (days)

GRB170817A

Not a regular short GRB!

Alternative model: Shock break-out (Nakar 2012)

Shock breakout from jet in merger ejecta

Emergence of jet structure post-breakout

Jet/ejecta interaction **may or may not give rise to collimated jet**! → Depends on jet energy, opening angle, ejecta velocity profile

Was there a jet in GRB170817A?

Early expectations:

off-LOS

LOS

- ✓ Jet hydro and analytic estimates (Duffel+18)
 → Yes, most jets are successful!
 - + if jet can break-out, then jet successful
 - + negligible thermal energy deposited by jet ir ejecta
- ✓ short GRB statistics (Beniamini+18)
 → Yes, most mergers result in collimated jets
- Information from afterglow:
 Either 1) Dominated by LOS material and there is energy injection (radial structure)
 or
 - 2) Off-LOS energetic material progressively seen (angular structure)

VLBI imagery confirms jet emergence

Hotokezaka+19

Jet formation & in-jet physics

Gottlieb+2018: Link of jetcocoon interaction with photospheric emission

Salafia+2019: Link of universal jet structure with short GRB luminosity function

Salafia+19

see also Kathirgamaraju+19, Gill+19

What now?

Should we expect more events with detailed jet studies?

→ Population study!

		•••••••	
_	Pop. model	G16	WP15
	GW+KN afterglow	100	100
19	GW+KN+JAG(p) photometry	38	11
	GW+KN+JAG(e) + VLBI	15	2.6
	GW+KN+JAG(e)+KNAG	3.0	1.5
	GW+KN+JAG(e)+VLBI	14	1.9
ue+	GW+KN+JAG(e)+KNAG+VLBI	2.9	1.3
Duq	GW+GRB	1.7	1.7

 N/N_{GW} (%)

1540⁺³²⁰⁰ BNS/Gpc³/yr (Abbott+2018)

Afterglow: OK VLBI: rare...

Depends on jet energy function

One spectacular event and then nothing? No... now we have new IDEAS!

see also Gottlieb+19, Salem+18

Cosmological GRBs

von Kinelin+2019: Fermi GBM short GRBs similar to GRB170817A (double peak: hard then soft)
→ Consistent with shock break-out radiation?

Matsumoto+19

X-ray afterglow plateaus

eniamini+2019

Conclusion

- From the point of view of GRB science, progress has been made in the study of relativistic jets
- Especially thanks to GRB170817A and counterparts
- Prospects for similar events are not good, not to mention the difficulty to follow up GW events and short GRBs in general (poorly localized, faint afterglow)
- Nonetheless, this event was a **big reveal, and brings much inspiration**
- Some classical/cosmological GRB observations are naturally interpreted with structured jets or new emission mechanisms such as shock breakout:
 - Afterglow plateaus and flares
 - Mildly-relativistic shocks and late-time behavior of GRB afterglows
 - Luminosity functions, GRB beaming factor and statistics
 - New approaches to the GRB progenitors: their populations and collapse mechanisms
 - Much (much) more!

Von Kienlin GRBs

13