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Context
Black hole jets

Hubble photo of the jet ejected from
M87

M87 radio jet width as a function of
the distance to the black hole

Jets are launched very close to the event horizon!
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Context
Observations
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Gamma-ray luminosity of the AGN IC
310

I For IC 310: horizon crossing time
∆t = rg/c = GM/c3 ≈ 23 min

I Extremely variable gamma-ray
flares observed

I Brightening of the radio core
during flares

⇒ Particles are accelerated very
close to the event horizon

⇒ Connection between particle
acceleration and jet formation
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Context
Observations

Motion of the flare centroid

I Observation of a hot spot orbiting
Sgr A* by GRAVITY

I Polarization measurements suggest
large scale poloidal magnetic
field
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Context
Event Horizon Telescope

EHT image of the supermassive black
hole shadow in M87

I Confirms M87* as a supermassive
black hole

I Asymmetry of the ring controlled
by the BH spin

I Multi-wavelength observation →
black hole must be spinning
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Theoretical modeling
Global picture

Ingredients:
I Spinning black hole
I Large scale magnetic field
I Hot and collisionless accretion flow

Key questions:
I How is energy extracted from the black hole? (What powers the jet?)
I How is the jet loaded with mass?
I How (and where) are particles accelerated?
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Theoretical modeling
Blandford-Znajek mechanism

Jet

Rotating field
lines

Electric
current

I Electromotive force originates from
space-time dragging by the spinning black
hole

I Current carried by plasma, which extracts
energy and angular momentum from the
BH

I Output power prediction:

L ∼ 1046a2
(

B0

104 G

)2 (
M

109 M�

)2

erg/s

⇒ Can account for the observed power of
AGN
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Theoretical modeling
Vacuum breakdown

Pair
creation

Compton
scattering

γ

γ

e+

e−

In this picture, plasma must be continuously
injected in the black hole magnetosphere

I Particles and photons interact with a soft
bakground radiation field (produced by the
accretion disk)

I Particle acceleration by gravitationally
induced electric field

I Inverse Compton scattering of
ultra-relativistic particles off soft photons
→ high-energy radiation

I Photon-photon annihilation → plasma
injection
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State of the art

Parfrey, Philippov & Cerutti, 2019

Particle-in-cell simulations
including full GR, with vertical
magnetic field

Approximate injection
method
Every time step, inject density
δn ∝ |D ·B| /B, provided
|D ·B| /B2 > ε
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State of the art

Plasma density in the current sheet

I Development of a force-free
magnetosphere

I Reconnection and particle
acceleration at the equatorial
current sheet

I Energy extraction by
negative-energy particles (Penrose
process)
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Numerical methods
Simulation setup

rpml
rmax

ϕϕ

rh

External
radiation

Magnetic
field lines

Gap?

Ergosphere

Here we include IC scattering and
γγ annihilation to have
self-consistent plasma injection

I 2D axisymmetric simulation

I Magnetic monopole

I Maximally spinning black hole:
a = 0.99
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Results
Magnetospheric structure
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Results
Magnetospheric structure
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Results
Bursts and gap location

Phase space plot (log10 γ as a function of the distance to the black hole, at
θ = π/4)
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Results
Bursts and gap location

Time averaged parallel electric field

I Gap opens at the light surface,
then moves inwards or outwards

I Conclusion holds for lower spin a

I Gap size h: larger than plasma skin
depth, smaller than rg
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Results
Bursts and gap location

Phase space plot of the freshly created pairs
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Results
Bursts and gap location

I Bursts of pair creation at short
time scales (a fraction of rg/c)

I Pair creation occurs in these “flying
gaps”

I Dissipated power around 5% of the
total Poynting flux
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Bonus slide
Output power
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I Output power
matches BZ
prediction
LBZ = B2

0ω
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I Dissipation goes
down as opacity
increases

I Most energy
transferred to
low-energy photons
(beyond pair
creation threshold)
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Conclusion

Results:
1 Blandford-Znajek process extracts energy

2 Mass loading of the jet explained

3 Time dependent gap at the light surface

Outlooks:
I Study other magnetic configurations

I Reproduce observables (e.g. γ-ray lightcurve)

I Model black hole-disc interaction (GRAVITY observations)
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Results
Parameter scalings

Key parameters
I Opacity τ0 = nsσT rg , where ns is the background radiation field density
I Magnitude of the magnetic field B̃0 = rgeB0/mec

2

I ε̃0 = ε0/mec
2 energy of the background radiation field

In M87*, B̃0 ∼ 1014 and ε̃0 ∼ 1̃0−9; in practice we have a smaller separation of
scales, which must satisfy

γrad � γs � 1,

where γs = 1/ε̃0 is the Lorentz factor of the bulk of the particles, and γrad is
the maximum Lorentz factor achievable with radiative losses

We kept ε0 = 0.01mec
2, eB0rg/mec

2 = 105 fixed
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