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Black hole jets [ IPAG

Hubble photo of the jet ejected from
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Hubble photo of the jet ejected from M87 radio jet width as a function of
mM87 the distance to the black hole

Jets are launched very close to the event horizon!

B. Crinquand Pair cascade in Kerr magnetospheres

2/19



Context .9
Observations */ IPAG

» For IC 310: horizon crossing time
At =r,/c=GM/c® ~ 23 min
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Context .9
Observations [ PAG

d
100
» Observation of a hot spot orbiting
or Sgr A* by GRAVITY
) » Polarization measurements suggest
~100+ %{ 1 large scale poloidal magnetic
field
100 0 100

Motion of the flare centroid
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Context .9
Event Horizon Telescope /[ IPAG

» Confirms M87* as a supermassive
black hole

» Asymmetry of the ring controlled
by the BH spin

» Multi-wavelength observation —
black hole must be spinning

EHT image of the supermassive black
hole shadow in M87
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Theoretical modeling gt
Global picture [ IPAG

Ingredients:
» Spinning black hole
» Large scale magnetic field

» Hot and collisionless accretion flow
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Theoretical modeling gt
Global picture [ IPAG

Ingredients:
» Spinning black hole
» Large scale magnetic field

» Hot and collisionless accretion flow

Key questions:

» How is energy extracted from the black hole? (What powers the jet?)
» How is the jet loaded with mass?

» How (and where) are particles accelerated?
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Theoretical modeling gt
Blandford-Znajek mechanism [ IPAG

» Electromotive force originates from
space-time dragging by the spinning black
hole

» Current carried by plasma, which extracts
energy and angular momentum from the
BH

Aol
/ Electric

{ current’

Rotating field
lines
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Theoretical modeling gt
Blandford-Znajek mechanism [ IPAG

» Electromotive force originates from
space-time dragging by the spinning black
hole

» Current carried by plasma, which extracts
energy and angular momentum from the
BH

» Output power prediction:

Bo \°( M \?
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L~10"a (104 G> <109M@> erg/s
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/ )
; Electric
‘ current’
: = Can account for the observed power of
Rotating field AGN
lines
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Theoretical modeling gt
Vacuum breakdown [ iPaG

In this picture, plasma must be continuously
injected in the black hole magnetosphere

» Particles and photons interact with a soft

Y +
€ bakground radiation field (produced by the
/ . .
accretion disk)

Pair
creation I

Y e
Compton
scattering
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Vacuum breakdown [ iPaG

In this picture, plasma must be continuously
injected in the black hole magnetosphere

» Particles and photons interact with a soft

Y + .
€ bakground radiation field (produced by the
/ . .
accretion disk)
Pair
creation 7\/\,\/\,\\_ » Particle acceleration by gravitationally
e

induced electric field

> Inverse Compton scattering of
ultra-relativistic particles off soft photons
— high-energy radiation

Compton
scattering
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Theoretical modeling gt
Vacuum breakdown [ iPaG

In this picture, plasma must be continuously
injected in the black hole magnetosphere

» Particles and photons interact with a soft

v + .
€ bakground radiation field (produced by the
/ . .
accretion disk)

Pair
creation I » Particle acceleration by gravitationally

ol e induced electric field
Compton > Inverse Co.nr]pt.on sca.ttering of
scattering ultra-relativistic particles off soft photons

— high-energy radiation

» Photon-photon annihilation — plasma
injection
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State of the art /0/
/[ IPaG

Particle-in-cell simulations
including full GR, with vertical
magnetic field

Approximate injection

method

Every time step, inject density
onx |D-B| /B, provided
|D-B|/B? > ¢

Parfrey, Philippov & Cerutti, 2019
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State of the art /0/
/[ IPaG

» Development of a force-free
magnetosphere

» Reconnection and particle
acceleration at the equatorial
current sheet

> Energy extraction by
negative-energy particles (Penrose
process)

Plasma density in the current sheet
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Numerical methods ke
Simulation setup [ IPAG

External CRy . .
diati 7 K Here we include IC scattering and
radiation EEY A
_ o K ~= annihilation to have
Magngtlc |y ‘Ll'v’,, self-consistent plasma injection
field lines Ll

Ergosphere

» 2D axisymmetric simulation

Gap?——»m » Magnetic monopole

Foml » Maximally spinning black hole:
a=20.99

rmax
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Results .9
Magnetospheric structure [ IPAG

B. Crinquand Pair cascade in Kerr magnetospheres

12 /19



Results .9
Magnetospheric structure [ IPAG
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Results .9
Bursts and gap location [ IPAG

Phase space plot (log;oy as a function of the distance to the black hole, at
0 =m/4)
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RES -9
Bursts and gap location /[ IPAG

Time averaged parallel electric field

0.004

» Gap opens at the light surface,
0.002 then moves inwards or outwards

» Conclusion holds for lower spin a

0.000

z/m

» Gap size h: larger than plasma skin
depth, smaller than rg

—0.002
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Results .9
Bursts and gap location [ IPAG

Phase space plot of the freshly created pairs
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Results Re-
Bursts and gap location [/ PaG

Pair creation rate (arb. unit)

» Bursts of pair creation at short
time scales (a fraction of rg/c)

» Pair creation occurs in these “flying
gaps’

» Dissipated power around 5% of the
total Poynting flux

2
R/ry
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Bonus slide gt
Output power [ IPAG

Ho » Output power
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Conclusion g
/[ IPaG

Results:

Blandford-Znajek process extracts energy
Mass loading of the jet explained

Time dependent gap at the light surface

Outlooks:

» Study other magnetic configurations
» Reproduce observables (e.g. v-ray lightcurve)

» Model black hole-disc interaction (GRAVITY observations)
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Results .9
Parameter scalings [ IPAG

Key parameters
» Opacity 79 = nsotrg, where ng is the background radiation field density

» Magnitude of the magnetic field By = rgeBo/mec2
> £y = go/mec? energy of the background radiation field

In M87*, By ~ 10 and &, ~ 1079; in practice we have a smaller separation of

scales, which must satisfy
Yrad > Vs > 1,

where v5 = 1/& is the Lorentz factor of the bulk of the particles, and 7aq is
the maximum Lorentz factor achievable with radiative losses

We kept g9 = 0.01m.c?, eByry/mec? = 10° fixed
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