

Dynamical effects of radiative losses in high-mass microquasars

Arthur CHARLET

CRAL - LUPM

29 novembre 2019

Jets in HMMQ

Outline

Microquasars

Methods 2

- Code
- Model description

Results

- Dynamical effects
- Emissivity

Plan

Methods

- Code
- Model description
- B) Result
 - Dynamical effects
 - Emissivity

High Mass Microquasars

Lab of relativistic plasma physics:

2 main spectral states: Low Hard State (LHS): peak \sim 100 keV + radio jets (Corbel *et al.* 2012) High Soft State (HSS): black body-like peak 1 keV

Observed jets

large-scale structure Different zones = different radiative processes

Collimated jet misaligned with structure: are we sure it originates from the jet ?

Cygnus X-1 @1.4 GHz (Gallo et al. 2005). Structure spans \sim 15 ly

Motivations

Questions:

jet contribution to HE spectrum ? dynamical effects of wind & radiative losses ?

Difficulties:

midly relativistic regime: usual approximations not valid adding radiative processes = calculation time++

State of the art: no global simulations with dynamical losses

My work:

calculation of radiative processes in our general regime RHD and radiative losses in A-MaZe global simulations over a long time period

Plan

2 Methods

- Code
- Model description

Results

- Dynamical effects
- Emissivity

Code

Code

A_MaZe (R. Walder, D. Folini)

newtonian hydrodynamics conservative scheme finite volumes multiD *upwind* algorithm AMR

accretion in Cygnus X-1 (Walder et al. 2014)

Box dimension 1AU (left), \sim 0.01AU (right), refinement up to $8R_S$ (right)

Relativistic hydrodynamics

Primitive variables:

Conservative variables:

rest frame density ρ $D = \gamma \rho$ velocity v^i $S^i = cT^{0i} = \rho h \gamma^2 v^i$ pressurep $\tau = T^{00} - J^0 c^2 = \rho h \gamma^2 - p$

Conservation of current $J^\mu=\rho u^\mu$ and energy-momentum tensor $T^{\mu\nu}=\rho h u^\mu u^\nu+pg^{\mu\nu}$

$$\begin{aligned}
\nabla_{\mu}J^{\mu} &= 0 \qquad \Rightarrow \qquad \qquad \partial_{t}D + \partial_{i}(Dv^{i}) &= 0 \qquad (1) \\
\nabla_{\mu}T^{\mu\nu} &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{t}S^{j} + \partial_{i}(S^{j}v^{i} + pc^{2}\delta^{ij}) &= 0 \qquad (2) \\
\partial_{\mu}D &= 0 \qquad \qquad \partial_{\mu}D^{j} + \partial_{\mu}D^$$

Radiative mechanism

$$P_{loss} = P_{Bremsstrahlung} + P_{Synchrotron} + P_{InverseCompton}$$

Radiative mechanism

$$P_{loss} = P_{Bremsstrahlung} + P_{Synchrotron} + P_{InverseCompton}$$

Bremsstrahlung + relativistic correction (Rybicki & Lightman 1979):

$$P_{Bremsstrahlung} = 1.4 \cdot 10^{-27} T^{1/2} n_e n_p \bar{g}_B (1 + 4.4 \cdot 10^{-10} T)$$
(4)

Arthur CHARLET (CRAL - LUPM)

Radiative mechanism

$$P_{loss} = P_{Bremsstrahlung} + P_{Synchrotron} + P_{InverseCompton}$$

Bremsstrahlung + relativistic correction (Rybicki & Lightman 1979):

$$P_{Bremsstrahlung} = 1.4 \cdot 10^{-27} T^{1/2} n_e n_p \bar{g}_B (1 + 4.4 \cdot 10^{-10} T)$$
(4)

Synchrotron and IC: RL79 modified with relativistic Maxwellian distribution:

$$P = \frac{4}{3}\sigma_T cn_e \gamma^2 \beta^2 U \qquad \Rightarrow \qquad P = \frac{4}{3}\sigma_T cn_e \gamma \Theta \frac{K_3(1/\Theta)}{K_2(1/\Theta)} U$$

Plan

Methods

- Code
- Model description

Results

- Dynamical effects
- Emissivity

Large scale

Star - BH separation a = 0.2 AU

reflexive conditions at x=0, outflow elsewhere ρ_j, v_j, T_j at injection box ~ 7 × 5 × 5 AU coarse grid: 250 × 200 × 200, $dx = dy = dz = 4 \cdot 10^9$ m 5 levels up to ×64 refinement fixed grid centered on jet for performance 12 setups

following figures all in log scale

Results

Jet morphology

Cocoon (1): shocked wind material, large emitting bubbleHere:Inner cocoon (2): jet + wind material, instabilities $10^{-17} < \rho < 10^{-13}$ g cm⁻³Beam (3): injected matter, recollimation shocks $10^7 < T < 10^{11}$ K

Results

Jet morphology

Cocoon (1): shocked wind material, large emitting bubbleHere:Inner cocoon (2): jet + wind material, instabilities $10^{-17} < \rho < 10^{-13}$ g cm⁻³Beam (3): injected matter, recollimation shocks $10^7 < T < 10^{11}$ K

Results D

Dynamical effects

Jet bending

 $\label{eq:plim} \begin{array}{l} \textbf{P}_{j} < \textbf{P}_{lim} \text{, strong bending of the beam \& instabilities (Molina \& Bosch-Ramon 2018)} \\ & \rightarrow \text{misaligned large-scale structure of Cyg X-1 ?} \end{array}$

Arthur CHARLET (CRAL - LUPM)

Jets in HMMQ

29 novembre 2019 14 / 21

Dynamical effects

Cocoon deformation

Previous simulation sliced at x = a/3: strong stellar wind

Bow shock around beam, cocoon pushed by wind

Results

Emissivity

Maps

Bremsstrahlung

 $\epsilon \propto \rho^2 T$, strong at front shock and cocoon interface

Synchrotron

Strongest at shock front $U = B^2/8\pi$, with $B_{\star,0} = B_{j,0} = 10$ G

Inverse Compton

Same ho, T dependance as synchrotron ightarrow same structure, overally weaker $U \propto \sigma_T T_\star^4$

Cooling time

 $t_{cool} = e_{int} / \Sigma \epsilon_i$

low t_{cool} near beam injection (stronger winds) and inner cocoon high t_{cool} for beam

Conclusions and prospects

Conclusions

implementation of SR hydro with radiative losses in A_MaZe jet bending under critical P_j and cocoon deformation high t_{cool} variability: modified structure but no effects on propagation (yet)

Prospects

```
refine the model:

T > 10^{10} K (e^{\pm} production), adapt the EoS

add non-thermal e^{-} \rightarrow modifications to the dynamics ?

launch a simulation at best precision

draw radiation maps (radio/UV/X) and spectras

simulate other systems
```