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Why Provenance in TAP ?

● Provenance information can be attached to data in 
various ways :
– Embedded in the data « header » itself

– Linked to the data record via DataLink or URL

– Retrievable via ProvSAP via data id.

● In addition to that , Provenance metadata in a TAP 
service will allow to discover « data » by constraining 
Provenance features.
– It's a « reverse » mechanism.



« The » issue = complexity
(see « FAIR high level data for Cherenkov astronomy » )



                                       « The » issue  
                                   = complexity

->1 table per class ? 
---→ ProvTAP



ProvTAP TAP_SCHEMA:
parameter table 



ProvTAP status

● There is an internal draft

on the IVOA DAL page

● TAP schema mapping classes

 as tables

● ProvHiPS (provenance of

 HiPS and HiPS tiles) is 

an implementation prototype

● From now examples and demos 

from ProvHiPS 

 



ProvTAP TAP_SCHEMA:
Entity table



ProvTAP TAP_SCHEMA:
parameterDescription table 



ProvHiPS :
a ProvTAP service for HST HiPS

● Everybody knows HiPS ?
● HiPS made of tiles at a given order
● Tiles have a couple of progenitors in the 

original data collection (HST Fits files – 
drizzled, simply calibrated or raw)

● Provenance of tiles



ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS  tile.  

 

 j8e614010_drc

Drizzled image

HipsTile: Npix9199544 

WasGeneratedBy

Activity : Hipsgen production of tile 
Npix9199544

used usedusedusedused

j8mt37011_drc
Drizzled image

j8mt37021_drc
Drizzled image

query



ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS  tile.  

select e.e_name, e.e_comment, a_name, a_starttime, a_comment, ee.e_name, 
ee.e_comment from entity e 

join wasgeneratedby on e.e_id = wgb_entity

join activity on wgb_activity = a_id

join used on a_id = u_activity

join entity ee on ee.e_id = u_entity

where e.e_name like '%Npix9199544'

  



ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS  tile.  



Finding agent and activity 
to whom entity is attributed 
and generating a given entity

● select ag_name,ag_type,ag_comment, e_name, 
e_generated,e_location, e_comment, a_name, 
a_comment 

from agent 

join wasattributedto on ag_id = wat_agent

join entity on wat_entity = e_id 

join wasgeneratedby on e_id = wgb_entity 

join activity on a_id = wgb_activity

where e_name = 'jbyq07020_drc'  



Issues

● Table is denormalized : a lot of redundant 
information

● Loop issue : several occurances of the same 
triplet (name,utype,ucd) in the same table 
for different « objects »

● Let’s try minimum or last step provenance by 
creating a standardized view 



Solutions 
-1 Single step = single table ( = join) 

● The join is a permanent view described in the TAP schema
● Columns : 

entity_name, entity_location, entity_comment, ...

generating_activity_name, generating_activity_starttime,  ….

agent_role, agent_name, ….

used_entity_list

● → Redundancy may be avoided if we group all used 
entities ids in a single cell

● → possible Recursivity 



Solutions 
Single step ( = join) – 1line per used entity   

● View (in postgres)

 

 create view last_step_provenance as select 

e.e_name as entity_name, e.e_location as  entity_location, e.e_generated as entity_generated, e.e_invalidated as 
entity_invalidated, e.e_comment as entity_comment, 

a_name as generating_activity_name,a_starttime as generating_activity_starttime, a_endtime as 
generating_activity_endtime, a_comment as generating_activity_comment, 

wat_role as agent_role, ag_name as agent_name, ag_type as agent_type ,ag_affiliation as agent_affiliation, ag_email 
as agent_email, ag_address as agent_address, ag_phone as agent_phone, ag_comment as agent_comment, 

ee.e_name as used_entity_name from entity as e

join wasgeneratedby on wgb_entity = e.e_id
join activity on a_id = wgb_activity 
join used on u_activity = a_id
join entity as ee on ee.e_id = u_entity
join wasattributedto on wat_entity = e.e_id
join agent on ag_id = wat_agent ; 



Solutions 
Single step ( = join) 1 single line per generated entity

● View (in postgres)

 

 create view minimum_provenance as select 

e.e_id AS entity_id,  e.e_name AS entity_name, e.e_location AS entity_location, e.e_generated AS entity_generated,
    e.e_invalidated AS entity_invalidated, e.e_comment AS entity_comment,

 activity.a_name AS generating_activity_name, activity.a_starttime AS generating_activity_starttime,       
activity.a_endtime AS generating_activity_endtime, activity.a_comment AS generating_activity_comment,

 wasattributedto.wat_role AS agent_role, agent.ag_name AS agent_name, agent.ag_type AS agent_type,
    agent.ag_affiliation AS agent_affiliation, agent.ag_email AS agent_email, agent.ag_address AS agent_address,
    agent.ag_phone AS agent_phone, agent.ag_comment AS agent_comment,

string_agg(used.u_entity::text, ','::text) AS used_entities_list
FROM entity e

 JOIN wasgeneratedby ON e.e_id::text = wasgeneratedby.wgb_entity::text
 JOIN activity ON wasgeneratedby.wgb_activity::text = activity.a_id::text
join used on u_activity = a_id
join entity as ee on ee.e_id = u_entity
join wasattributedto on wat_entity = e.e_id
join agent on ag_id = wat_agent ; yypo



Solutions 
Single step = view query execution 



Two queries with these flat views

● select * from last_step_provenance where 
entity_name = 'j90x37020_drc'

→ response in several lines with redundancy
● select * from minimum_provenance where 

entity_name = 'j90x37020_drc'

→ response in one line 



Success and limitations view 1

● Clear column names for distinct objects 
●  Rather simple recursivity to manage
● But :

● Redondancy still there
● No direct retrieval for chains of provenance



Success and limitations view 2

● Clear column names for distinct objects 
●  No more redundancy
● But :

● Complex recursivity to manage
● No direct retrieval for chains of provenance



Entity + dataset descriptions

● Finding datasetdescription for entities used by an activity 
started in november 2018.

SELECT  *

FROM datasetdescription 

join entity on e_description = dd_id

join used on e_id = u_entity

join activity on a_id = u_activity

where a_starttime like '2018-11%'



Entity + dataset descriptions

SELECT  *

FROM datasetdescription 

join entity on e_description = dd_id

join used on e_id = u_entity

join activity on a_id = u_activity

where a_starttime like '2018-11%'



Full entity view

This view gathers entity and datasetdescription 
columns in one single table
 
create view full_entity as select
e_id,e_name,  e_location, e_generated, e_invalidated, 
e_comment
 dd_name, dd_type, dd_subtype, dd_doculink 
from entity 
join datasetdescription on dd_id = e_description ; 



Reduced query using the view

1 ligne 2 ligne 3 ligne 4 ligne
0

2

4

6

8

10

12

1 colonne

2 colonne

3 colonne

SELECT  *
FROM full_entity
join used on e_id = u_entity
join activity on a_id = u_activity
where a_starttime like '2018-11%' ;



Reduced query using the view



Other views : activity in workflow

Activity in workflow :  
● Important for CTA, SKA ??
● Activity is part of a workflow execution 
● Workflow execution is a superactivity encompassing 

several activities
● It has an activityDescription
● The activityDescription can point to CWL description



Other views : activity in workflow

● activity_in_workflow defined as following view :
create view activity_in_workflow as 

Select a.a_name as activity_name,a.a_starttime as activity_starttime, 
a.a_endtime as activity_endtime, a.a_comment as activity_comment,
sa.a_name as workflow_exec_name, sa.a_starttime as 
workflow_exec_starttime, sa.a_endtime as workflow_exec_endtime,
ad_name as workflow_name, ad_type as workflow_activity_description_type, 
ad_doculink as workflow_external_description
 from activity a
join wasinformedby on wib_informed = a.a_id
join activity sa on sa.a_id = wib_informant
join activitydescription on ad_id = sa.a_description
Where workflow_activity_description_type = « Workflow »



Standard

● Add some of these views 
as standard official simplification

● Allow to create services providing only 
the simplified views

● New version of WD in progress
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