
IVOA ProvTAP :
November 2021 status

F.Bonnarel, CDS
on behalf of M.Servillat, M.Louys, M.Nullmeier, M.Sanguillon,
L.Michel

Why Provenance in TAP ?

● Provenance information can be attached to data in
various ways :
– Embedded in the data « header » itself

– Linked to the data record via DataLink or URL

– Retrievable via ProvSAP via data id.

● In addition to that , Provenance metadata in a TAP
service will allow to discover « data » by constraining
Provenance features.
– It's a « reverse » mechanism.

« The » issue = complexity
(see « FAIR high level data for Cherenkov astronomy »)

 « The » issue
 = complexity

->1 table per class ?
---→ ProvTAP

ProvTAP TAP_SCHEMA:
parameter table

ProvTAP status

● There is an internal draft

on the IVOA DAL page

● TAP schema mapping classes

 as tables

● ProvHiPS (provenance of

 HiPS and HiPS tiles) is

an implementation prototype

● From now examples and demos

from ProvHiPS

ProvTAP TAP_SCHEMA:
Entity table

ProvTAP TAP_SCHEMA:
parameterDescription table

ProvHiPS :
a ProvTAP service for HST HiPS

● Everybody knows HiPS ?
● HiPS made of tiles at a given order
● Tiles have a couple of progenitors in the

original data collection (HST Fits files –
drizzled, simply calibrated or raw)

● Provenance of tiles

ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS tile.

 j8e614010_drc

Drizzled image

HipsTile: Npix9199544

WasGeneratedBy

Activity : Hipsgen production of tile
Npix9199544

used usedusedusedused

j8mt37011_drc
Drizzled image

j8mt37021_drc
Drizzled image

query

ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS tile.

select e.e_name, e.e_comment, a_name, a_starttime, a_comment, ee.e_name,
ee.e_comment from entity e

join wasgeneratedby on e.e_id = wgb_entity

join activity on wgb_activity = a_id

join used on a_id = u_activity

join entity ee on ee.e_id = u_entity

where e.e_name like '%Npix9199544'

ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS tile.

Finding agent and activity
to whom entity is attributed
and generating a given entity

● select ag_name,ag_type,ag_comment, e_name,
e_generated,e_location, e_comment, a_name,
a_comment

from agent

join wasattributedto on ag_id = wat_agent

join entity on wat_entity = e_id

join wasgeneratedby on e_id = wgb_entity

join activity on a_id = wgb_activity

where e_name = 'jbyq07020_drc'

Issues

● Table is denormalized : a lot of redundant
information

● Loop issue : several occurances of the same
triplet (name,utype,ucd) in the same table
for different « objects »

● Let’s try minimum or last step provenance by
creating a standardized view

Solutions
-1 Single step = single table (= join)

● The join is a permanent view described in the TAP schema
● Columns :

entity_name, entity_location, entity_comment, ...

generating_activity_name, generating_activity_starttime, ….

agent_role, agent_name, ….

used_entity_list

● → Redundancy may be avoided if we group all used
entities ids in a single cell

● → possible Recursivity

Solutions
Single step (= join) – 1line per used entity

● View (in postgres)

 create view last_step_provenance as select

e.e_name as entity_name, e.e_location as entity_location, e.e_generated as entity_generated, e.e_invalidated as
entity_invalidated, e.e_comment as entity_comment,

a_name as generating_activity_name,a_starttime as generating_activity_starttime, a_endtime as
generating_activity_endtime, a_comment as generating_activity_comment,

wat_role as agent_role, ag_name as agent_name, ag_type as agent_type ,ag_affiliation as agent_affiliation, ag_email
as agent_email, ag_address as agent_address, ag_phone as agent_phone, ag_comment as agent_comment,

ee.e_name as used_entity_name from entity as e

join wasgeneratedby on wgb_entity = e.e_id
join activity on a_id = wgb_activity
join used on u_activity = a_id
join entity as ee on ee.e_id = u_entity
join wasattributedto on wat_entity = e.e_id
join agent on ag_id = wat_agent ;

Solutions
Single step (= join) 1 single line per generated entity

● View (in postgres)

 create view minimum_provenance as select

e.e_id AS entity_id, e.e_name AS entity_name, e.e_location AS entity_location, e.e_generated AS entity_generated,
 e.e_invalidated AS entity_invalidated, e.e_comment AS entity_comment,

 activity.a_name AS generating_activity_name, activity.a_starttime AS generating_activity_starttime,
activity.a_endtime AS generating_activity_endtime, activity.a_comment AS generating_activity_comment,

 wasattributedto.wat_role AS agent_role, agent.ag_name AS agent_name, agent.ag_type AS agent_type,
 agent.ag_affiliation AS agent_affiliation, agent.ag_email AS agent_email, agent.ag_address AS agent_address,
 agent.ag_phone AS agent_phone, agent.ag_comment AS agent_comment,

string_agg(used.u_entity::text, ','::text) AS used_entities_list
FROM entity e

 JOIN wasgeneratedby ON e.e_id::text = wasgeneratedby.wgb_entity::text
 JOIN activity ON wasgeneratedby.wgb_activity::text = activity.a_id::text
join used on u_activity = a_id
join entity as ee on ee.e_id = u_entity
join wasattributedto on wat_entity = e.e_id
join agent on ag_id = wat_agent ; yypo

Solutions
Single step = view query execution

Two queries with these flat views

● select * from last_step_provenance where
entity_name = 'j90x37020_drc'

→ response in several lines with redundancy
● select * from minimum_provenance where

entity_name = 'j90x37020_drc'

→ response in one line

Success and limitations view 1

● Clear column names for distinct objects
● Rather simple recursivity to manage
● But :

● Redondancy still there
● No direct retrieval for chains of provenance

Success and limitations view 2

● Clear column names for distinct objects
● No more redundancy
● But :

● Complex recursivity to manage
● No direct retrieval for chains of provenance

Entity + dataset descriptions

● Finding datasetdescription for entities used by an activity
started in november 2018.

SELECT *

FROM datasetdescription

join entity on e_description = dd_id

join used on e_id = u_entity

join activity on a_id = u_activity

where a_starttime like '2018-11%'

Entity + dataset descriptions

SELECT *

FROM datasetdescription

join entity on e_description = dd_id

join used on e_id = u_entity

join activity on a_id = u_activity

where a_starttime like '2018-11%'

Full entity view

This view gathers entity and datasetdescription
columns in one single table

create view full_entity as select
e_id,e_name, e_location, e_generated, e_invalidated,
e_comment
 dd_name, dd_type, dd_subtype, dd_doculink
from entity
join datasetdescription on dd_id = e_description ;

Reduced query using the view

1 ligne 2 ligne 3 ligne 4 ligne
0

2

4

6

8

10

12

1 colonne

2 colonne

3 colonne

SELECT *
FROM full_entity
join used on e_id = u_entity
join activity on a_id = u_activity
where a_starttime like '2018-11%' ;

Reduced query using the view

Other views : activity in workflow

Activity in workflow :
● Important for CTA, SKA ??
● Activity is part of a workflow execution
● Workflow execution is a superactivity encompassing

several activities
● It has an activityDescription
● The activityDescription can point to CWL description

Other views : activity in workflow

● activity_in_workflow defined as following view :
create view activity_in_workflow as

Select a.a_name as activity_name,a.a_starttime as activity_starttime,
a.a_endtime as activity_endtime, a.a_comment as activity_comment,
sa.a_name as workflow_exec_name, sa.a_starttime as
workflow_exec_starttime, sa.a_endtime as workflow_exec_endtime,
ad_name as workflow_name, ad_type as workflow_activity_description_type,
ad_doculink as workflow_external_description
 from activity a
join wasinformedby on wib_informed = a.a_id
join activity sa on sa.a_id = wib_informant
join activitydescription on ad_id = sa.a_description
Where workflow_activity_description_type = « Workflow »

Standard

● Add some of these views
as standard official simplification

● Allow to create services providing only
the simplified views

● New version of WD in progress

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

