

Planetary Data Services

Astrogeology: what are working on

Outline

- Quick intro: Astrogeology
- Web Map Services (WMS)
- Tiled WMS (or TMS) services
- STAC/COG
- QGIS

Trent Hare, <u>thare@usgs.gov</u> Feb. 2022

USGS Astrogeology Science Center

Interdisciplinary science, research and production group

- Partnered with NASA, universities, international space agencies, and primary research institutions since the Apollo era
- Focus on foundational data products (geodetic control networks, topography, and orthoimagery) and framework data products (compositional maps, nomenclature, and geologic maps)
- Development of planetary imagery processing software (ISIS3), and home to several facilities that represent the broader planetary science community

Lobby of the Astrogeology Science Center in Flagstaff, AZ

MRCTR GIS Lab Mapping, Remote-Sensing, Cartography, Technology, and Research

HiRISE image web service overlying CTX blended mosaic web service

GIS Tools

- Python Toolboxes and Esri Add-Ins
- Contracted tools
- Python scripts

Tutorials

- Videos published to YouTube
- Workflows and self-paced exercises

Technology Tests & Standards

- Tiled imagery web services for global mosaics via MRF with LERC compression
 - Special thanks to Esri's Lucian Plesea
- Representation at OGC and USGS standards WGs

Our Goals

Develop within a Planetary Spatial Data Infrastructure framework

Promote discoverability, accessibility and interoperability of spatial data (Naß et al., 2017)

Leverage best practices in terrestrial geoscience mapping (Hare et al., 2018)

Life-Cycle Approach to Geospatial Data

Well-controlled foundational data products served in GIS-ready formats

Tools that help to avoid common pitfalls of planetary GIS

Leverage current publication and visualization technologies

Long-term archive and open web services

Community-driven standards to enhance discovery and coordinate advancement

Aim to meet user expectations that spatial data should 'just work'

- Develop policies, standards and access needed to connect people and data
- ° Create tools and training that help geologists think geographically
- Support appropriate use of data mapped at different scales

Build on existing spatial data standards

- Extend relevant data models for use in planetary domain
- Plug into modern visualization and analysis applications

Continued advocacy for support of planetary coordinate reference systems in web protocols and visualization tools

Global geologic map of Ganymede

Groups to help or join

International Cartography Association

• Members working towards in situ (rover) symbologies

MAPSIT

Spatial Data Infrastructure and Planetary Data Ecosystem

IAU

- Nomenclature
- Coordinate Systems

Open Geospatial Consortium

Planetary Domain Working Group

Evolution of planetary GIS services (my viewpoint)

What is WMS

Web Map Service Interface Standard (WMS) provides a simple https interface for requesting geo-registered map images. Available since late 90s. Requires map server.

OGC WMTS (Web Map Tile Service, aka TMS): For heavy use and high scalability the OGC has developed the WMTS service standard. It is an area-wide collection of consistently addressable seamless map image tiles organized in a pyramid with fixed scales. Clients request as many tiles as needed to cover the requested area. Available since mid-2000s. Required pre-processing tiles and simple https address (map server optional).

More: http://planetarygis.blogspot.com/2014/09/tips-to-interact-with-astros-wms-maps.html

WMS

Some Staying Power

- Simple API, thus it can still be useful
- Interfaces can "deal" with earth-centric issues (e.g. web map libraries, QGIS, ArcMap, ...)
- Strive to implement IAU 2015 codes across standard (is it too late?)
- Tiled WMS can support TB-sized mosaics

Challenges remain

- Based on Earth-centric Open Geospatial Consortium (OGC) standard
- IAU <u>2000</u> codes only implemented in retired USGS WMS server, ASU's Lunaserv and Mapserver branch (by Jean-Christophe M.)
- Technology dated (large move toward tiles and streaming formats like COG)

Astrogeology WMS Layers (in degrees or polar stereographic)

http://planetarygis.blogspot.com/2014/09/tips-to-interact-with-astros-wms-maps.html

Planetary GIS

Discussion and tips for the planetary researcher using GIS.

Thursday, January 6, 2022

Tips to interact with Astro's WMS maps

update from the original 2014 post:

For years we have supported our live mapping services (called Web Mapping Services, WMS) for use within our own web mapping tools but also for the community to use. For example, these layers are viewable from our Planetary Nomenclature, PILOT, Geologic Mapping sites, etc (example Aram Chaos on Mars). Thus they are ideal for use in web mapping apps like OpenLayers and Leaflet and also GISs like QGIS, ArcMap, or ENVI. And you can

Tiled WMS Layers (in degrees or polar stereogrphic)

https://bit.ly/HiRISE_mosaic

Uncontrolled Global HiRISE Mosaic

Mars High-Resolution Tiled Web Services

linked from: http://bit.ly/HiRISE_mosaic

An Esri introduction and Story Map for these layers: https://www.esri.com/arcgis-blog/products/arcgisonline/imagery/observing-the-red-planet/

These new Mars service hosted by Esri highlights controlled "foundational" mosaics including Viking MDIM v2.1 [231 m/p], MOLA/HRSC Blended Hillshade [200 m/p], and the USGS-created THEMIS Daytime and Nighttime mosaics [100 m/p]. We have also included the preliminary uncontrolled but high-resolution mosaics created by the Calteen Murray Lab for CTX [5 m/p] and USGS-generated HiRISE PSP/ESP mosaic [0.25 m/p]. Note on disk the

Tiled WMS Layers (in degrees or polar stereographic)

Tiled WMS Layers (in degrees or polar stereographic)

https://github.com/nasa-gibs/mrf

HiRISE helper:

https://github.com/lucianpls/mbuilder

Spatial Temporal Asset Catalog (STAC)

The STAC specification provides a common language to describe a range of geospatial information, so it can more easily be indexed and discovered. A 'spatiotemporal asset' is any file that represents information about the earth captured in a certain space and time.

The goal is for all providers of spatiotemporal assets (Imagery, SAR, Point Clouds, Data Cubes, Full Motion Video, etc) to expose their data as SpatioTemporal Asset Catalogs (STAC), so that new code doesn't need to be written whenever a new data set or API is released.

from: <u>https://stacspec.org/</u>

The core JSON pages can be transformed into browsable, interactive HTML pages with tools like <u>STAC Browser</u>. When STAC is used in concert with emerging formats like <u>Cloud Optimized GeoTIFF</u> or <u>TileDB arrays</u> the result vastly lowers the barriers for anybody to find and use geospatial assets like satellite imagery:

About Store		Great Screencastify
	Google	
	Google Search I'm Feeling Lucky	
	Students across the country Doodle for Google: Cast your vote for the finalists	
II 🦎 🖌 🏉 🔿 🗙 and works		Privacy Terms Settings

Spatial Temporal Asset Catalog (STAC)

Beta docs: <u>https://stac.astrogeology.usgs.gov/</u>

Beta STAC browser: <u>https://stac.astrogeology.usgs.gov/browser</u>

STAC help for QGIS: <u>https://stac.astrogeology.usgs.gov/docs/examples/to_qgis</u>

What is a Cloud Optimized GeoTIFF (COG)

An imagery format for cloud-native geospatial processing

COG: https://www.cogeo.org/

Efficient Imagery Data Access

COG-aware software can stream just the portion of data that it needs, improving processing times and creating real-time workflows previously not possible

Reduced Duplication of Data

Accessing COG's with cloud workflows enables diverse software to all access a single file online instead of needing to copy and cache the data

Legacy Compatibility

Traditional GIS software is able to treat Cloud Optimized GeoTIFF's just like normal GeoTIFF's, so data providers need only produce one format

QGIS Current Version: 3.22.3 (Jan. 2022)

P

Project <u>E</u> dit <u>V</u> iew <u>Layer</u> <u>Se</u>	ttings <u>P</u> lugins Vect <u>or</u> <u>Raster</u> <u>Database</u> <u>Web</u> <u>Mesh</u> Progessing <u>H</u> elp			
0 🗁 🗟 🔂 🔛 🕐	· C O D J	🔍 🖩 🏶 Σ 🔲 -	· 🖮 • 🖓 🖗	8.2
🤹 🏟 Va 🖉 🖷 🔣 🙆	点/目信友・読書×食豆ちゃ =魚 鳴● 鳴発信	6 📆 🤹 😤	-	
Browser	R R			
PostGIS SAP HANA MSSQL Oracle WMS/MMTS Mars Astrogeology (deg Mars Nomendature Mars Nomendature @ Mars Nomendature	rees) //MS Server #Boundaries © Centers © Centers -180 to 180			
iiii vector mes				
Layers	88			
Band 1 (Gray)	olled_5m_Caltech			
Mars Nomenclature	IM_MOLAtopography_1 Centers -180 to 180			
• DTEEC 045994 1985	046060_1985_U01	1. 1. 20		
DTEEC_045994_1985	046060_1985_U01			
		New York	The last	The second
4		The state of the state	ANT COL	-
Q. Type to locate (Ctrl+K)	1 lege xordina -25516,1083420 🛞 z 1:342903 👻 🔒 sgnifi 100% 🗘 xtatk 0.0 °	≎ 🗸 Render ⊕U	SER:100000	Q

Qt version	5.15.2
Python version	3.9.5
GDAL/OGR version	3.4.1
PROJ version	8.2.1
PSG Registry database	v10.041 (2021-12-03)
GEOS version	3.10.0-CAPI-1.16.0
SQLite version	3.35.2
PDAL version	2.3.0
ostgreSQL client version	13.0
SpatiaLite version	5.0.1

Planetary Projections now built in

Q Proje

🔀 Gene

View Setti

🗧 Vari S Mac

🕓 Tem

IAU_2015:aaabb

IAU_2015 report doi.org/10.1007/s10569-017-9805-5

aaa = NAIF body code
bb = projections

Filter 🔍 Mars		
Recently Used C	oordinate Reference Systems	
Coordinate Refe	rence System	Authority ID
•		
Predefined Coor	dinate Reference Systems	Hide deprecated C
Coordinate Refe	rence System	Authority ID
 Orthogram 	aphic	
Mars	(2015) - Sphere / Ocentric / Orthographic, clon = 0	IAU_2015:49965
Mars	(2015) - Sphere / Ocentric / Orthographic, clon = 180	IAU_2015:49970
Mars	(2015) / Ocentric / Orthographic, clon = 0	IAU_2015:49967
Mars	(2015) / Ocentric / Orthographic, clon = 180	IAU_2015:49972
Mars	(2015) / Ographic / Orthographic, clon = 0	IAU_2015:49966
Mars	(2015) / Ographic / Orthographic, clon = 180	IAU_2015:49971
🔻 Robinson	1	
Mars	(2015) - Sphere / Ocentric / Robinson, clon = 0	IAU_2015:49950
Mars	(2015) - Sphere / Ocentric / Robinson, clon = 180	IAU_2015:49955
Mars	(2015) / Ocentric / Robinson, clon = 0	IAU_2015:49952
Mars	(2015) / Ocentric / Robinson, clon = 180	IAU_2015:49957
Mars	(2015) / Ographic / Robinson, clon = 0	IAU_2015:49951
Mars	(2015) / Ographic / Robinson, clon = 180	IAU_2015:49956
 Sinusoid 	al (Sanson-Flamsteed)	
Mars	(2015) - Sphere / Ocentric / Sinusoidal, clon = 0	IAU_2015:49920
Mars	(2015) - Sphere / Ocentric / Sinusoidal, clon = 180	IAU_2015:49925
Mars	(2015) / Ocentric / Sinusoidal, clon = 0	IAU_2015:49922
Mars	(2015) / Ocentric / Sinusoidal, clon = 180	IAU_2015:49927
Mars	(2015) / Ographic / Sinusoidal, clon = 0	IAU_2015:49921
•		
0.01745329	ANGLEUNIT["degree", 25199433], ID["EPSG",8802]], RAMETER["False easting",0, LENGTHUNIT["metre",1], ID["EPSG",8806]],	

Adding Mars to QGIS 3.22+

http://planetarymaps.usgs.gov/cgi-

bin/mapserv?map=/maps/mars/mars_simp_cyl.map

🕟 Data Source Manager	· WMS/WMTS	×
Browser	Layers Layer Order Tilesets	
Vector	Mars Astrogeology (degrees)	•
Raster	4. Connect 2. New Edit Remove	Load Save
Mesh		
Point Cloud	▼ 0 Mars_Simple_Cy WMS Mars Server Plan	netary WMS service hosted
₱ Delimited Text	5. 1 MOLA_THEMIS MOLA Topogra MC 7 THEMIS THEMIS IR Day Ma	DLA Colorized DEM blende rs Odyssey THEMIS IR Day
🖗 GeoPackage	3 THEMIS_controll THEMIS IR Day Ma	rs Odyssey THEMIS IR Day
🖳 gps	5 MDIM21 MDIM21 Clib. Viki	ing Mars Digital Image Mo
🗲 SpatiaLite	Image Encoding	
PostgreSQL	PNG OPNG8 JPEG OGIF OTIFF SVG	
MSSQL	Options	
- 	Tile size	
Virtual Layer	Request step size	
SAP HANA	Maximum number or GetreatureInfo results	10 FPSG:4326 - WGS 84 💌 🌰
	Use contextual WMS Legend	av for now
WFS / OGC API -	Leves some TUENIC ID Day 100m Controlled Dark 1 March	
Seatures	Layer name THEMIS IK Day IUUM Controlled Partial Mosaic	
Ų, wcs	×	Close <u>A</u> dd Help

Create a New WMS/WMTS Connection

Connection Details

connect	ion Detuns						
Name	Mars Astroge	eology (degrees)				
URL	http://planet	arymaps.usgs.g	jov/	'cgi-ł	oin/mapserv	/?map=/map	os/mars/m
Authe	ntication						
Con Choo	figurations se or create a	Basic n authenticatior	n co	nfig	ıration		
No A	Authentication	• / =		₽			
Confi datab	gurations sto base.	e encrypted cre	eder	ntials	in the QGI	S authentica	tion
нттр							
Refer	er						
WMS/	WMTS Optio	ns					
DPI-M	<u>1</u> ode			all			-
Iç	Ignore GetMap/GetTile/GetLegendGraphic URI reported in capabilities						
Ig	gnore GetFeat	ureInfo URI rep	orte	ed in	capabilities	5	
Iç	gnore axis ori	entation (WMS 1	1.3/	'WM'	rs)		
Iç	gnore reporte	d layer extents					
Ir	nvert axis orie	ntation					
S	mooth pixma	o transform					
					ОК	Cancel	Help

Now Override WMS layer

(if needed)

Do the same: nomenclature WMS (simple labels)

http://wms.wr.usgs.gov/cgi-bin/ mapserv?map=/maps/mars/ mars_nomen_wms.map

Custom or local projection

Warning: nomenclature WMS layer may not work

Copy from layer's properties and create new custom projection

🕟 Custom Coordinate Reference System Definition Define You can define your own custom Coordinate Reference System (CRS) here. The definition must conform to a WKT or Proj string format for specifying a CRS. ÷ Parameters Name Jezero Crate... PROJCRS["EQUIRECTANGULAR MARS", BASEGEOGCRS["GCS MARS", DATUM["D M... 2. Name Jezero Crater Local Equi WKT (Recommended) Format PROJCRS["EOUIRECTANGULAR MARS", 3. Validate BASEGEOGCRS["GCS_MARS", DATUM["D MARS", Paste here ELLIPSOID["MARS_localRadius",3394839.8133163,0, LENGTHUNIT["metre",1, Parameters ID["EPSG",9001]]]], PRIMEM["Reference Meridian",0, ANGLEUNIT["degree", 0.0174532925199433, ID["EPSG",9122]]]], CONVERSION["unnamed" ▼ Test Use the text boxes below to test the CRS definition you are creating. Enter a coordinate where both the lat/long and the transformed result are known (for example by reading off a map). Then press the calculate button to see if the CRS

Ψ.

Help

5.

OK

Cancel

definition you are creating is accurate.

Now set project's CRS to your custom projection

1. Click here

oject Propert	ies — CRS	
	Project Coordinate Reference System (CRS)	
eneral	No CR C (or unknown /non-Earth projection)	
etadata	Filte Q Jezero 2.	•
214/	Recently Used Coordinate Reference Systems	
ettings	Coordinate Reference System	Authority ID
RS		
nsformatic	•	
fault	Predefined Coordinate Reference Systems	Hide deprecated CRS
/les	Coordinate Reference System	Authority ID
ta	🔻 👤 User Defined Coordinate Systems	
urces	3. Jezero local projection	USER:100000
acros	•	
GIS Server	Jezero local projection	
	Properties	
mporal	• Units: meters	
	Celestial body: Mars	
	• Method:	
		ST. Starting
	BASEGEOGCRS ["GCS_MARS",	- Contraction of the second second
	DATUM["D_MARS", ELLIPSOID["MARS localRadiu	A A A A A A A A A A A A A A A A A A A
	s", 3394839.8133163,0,	The state of the second
	ID["EPSG",	By Bron This
	9001]]]], PRIMEM["Reference Meridian",0.	
	ANGLEUNIT ["degree",	- Sector E
	U.UI/4532925199433,	

Coordinate capture plug-in (report/copy degrees)

- 1. Set to Mars degree (49900)
- 2. Use stream button or single point "start capture"

	Coord	inate Capture	o x
-	\bigcirc	in projection you s 77.09842,18.26772	set
		in meters -19549.253,1082383.224	
•	8		

TMS: download zip file (<u>https://bit.ly/HiRISE_mosaic</u>)

or directly: <u>https://www.dropbox.com/s/</u> <u>hhuqj7m9kc127us/OnMars</u> <u>Esri_TiledWMS_layers_0</u> <u>4282020.zip?dl=1</u>

Simply drag *.til or *.dem into QGIS to load

What is a *.til and *.dem – a simple TMS definition

<?xml version="1.0"?> <GDAL WMS> <Service name="TMS"> <ServerUrl>http://astro.arcgis.com/arcgis/rest/services/OnMars/CTX/MapServer/tile/\${z}/\${v}/\${x}</ServerUrl> </Service> <DataWindow> <UpperLeftX>-180.0</UpperLeftX> <UpperLeftY>90.0</UpperLeftY> <LowerRightX>180.0</LowerRightX> <LowerRightY>-90.0</LowerRightY> <SizeX>4194304</SizeX> <SizeY>2097152</SizeY> <TileLevel>12</TileLevel> <YOrigin>top</YOrigin> </DataWindow> <projection>GEOGCS["GCS Mars 2000 Sphere", DATUM["D Mars 2000 Sphere", SPHEROID["Mars 2000 Sphere IAU IAG", 339619 <BlockSizeX>512</BlockSizeX> <BlockSizeY>512</BlockSizeY> <BandsCount>1</BandsCount> <MaxConnections>5</MaxConnections> <DataValues NoData="0"/> <ZeroBlockHttpCodes>404,400,503</ZeroBlockHttpCodes> </GDAL WMS>

Let's load a COG from a STAC catalog

Beta STAC browser: <u>https://stac.astrogeology.usgs.gov/browser</u>

Find an image and copy the link (3N221W)

Direct COG link for DEM: https://asc-mars.s3.us-west-2.amazonaws.com/ctx_dtms/B20_017298_1830_XN_03N221W_B19_017153_1825_1 https://asc-mars.s3.us-west-2.amazonaws.com/ctx_dtms/B20_017298_1830_XN_03N221W_B19_017153_1825_XN_02N221W_B19_017153_1825_XN_02N221W_B19_017153_1825_XN_02N221W_DEM.tif

Ortho: https://asc-mars.s3.us-west-2.amazonaws.com/ctx_dtms/B20_017298_1830_XN_03N221W_B19_017153_1

😋 🏠 💼 stac.astrogeology.usgs.gov/browser/item/3q52Dkr5nBe3g684y9fzjwTFMjyyQ66QitBuDrNggEBLhzMJFUvkYYXvSppyx71tvJpVWQkxLgEHK/E... 😢 🚖 🥌 🧧 G 🏮 📄

USGS Astrogeology Provided Analysis Ready Data / USGS hosted Mars data. / MRO CTX ASP Generated 20mpp Digital Terrain Models / B20_017298_1830_XN_03N221W_B19_017153_1825_XN_02N221W_DEM

Ames Stereo Pipeline Derived 20mpp Content Camera DTM and Ortho Image; Mars; B20_017298_1830_XN_03N221W, B19_017153_1825_XN_02N221W (B20_017298_1830_XN_03N221W_B19_017153_1825_)

STAC

browser

🔶 🌏 🗄

METADATA

Collection MRO CTX ASP Generated 20mpp Digit Title Ames Stereo Pipeline Derived 20mpp (

- and Ortho Image; Mars; B20_017298_* B19_017153_1825_XN_02N221W
- Description This is a digital terrain model (DTM) exi Camera (CTX) stereo images from the Reconnaissance Orbiter mission. This (DTM from stereo images acquired at ap meters/pixel resolution, which allows ar resolution of 20 meters/pixel. The DTM the Ames Stereo Pipeline software (https://github.com/NeoGeographyTooli using automated methods. This DTM w general and public use, including scient purposes. This DTM also serves as a fc projection.
- Missions Mars Reconnaissance Orbiter Instruments Context Camera (CTX)

÷

*

Close

Add

nations on options

Let's load a COG from a STAC catalog

🕟 Data Sourc	e Manager — Raster	×	
📛 Browsei	Source Type		
V- Vector	○ File ● Protocol: HTTP(S), cloud, etc.		
Raster	Protocol		
Mesh Point	Type HTTP/HTTPS/FTP URI _017153_1825_XN_02N221W/B20_017298_1830_XN_03N221W_B19_017153_1825_XN_02N221W Authentication	V_DEM.tif	
Delimite Text	Configurations Basic Choose or create an authentication configuration No Authentication		
🖳 GPS	Configurations store encrypted credentials in the QGIS authentication database.		
Postgre	Consult G NUM_THE GEOTIFF_ GEOREF_ GEOREF_ SPARSE_	Tiff driver help p READS KEYS_FLAVOR SOURCES OK	age for detailed exp 4 <default> <default></default></default>
	Help		

Loaded COG

