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Neutron stars: laboratories for dense matter
Formed in gravitational core-collapse supernova explosions, neutron
stars are the most compact stars in the Universe.

Nuclear physics:

M ∼ 1 − 2M⊙
R ∼ 10 km
⇒ ρ ∼ 1015 g cm−3

Energy scale: MeV

“cold” ≲ 1010 K ≲ “hot”

Neutron stars are initially very hot (∼ 1012 K) but cool down to
∼ 109 K within days by releasing neutrinos.

Their dense matter is thus expected to undergo various phase
transitions, as observed in terrestrial materials at low-temperatures.



Nuclear superfluidity and superconductivity
The implications of the BCS theory (published in January 1957) for
atomic nuclei were first discussed by A. Bohr, B. R. Mottelson, and D.
Pines during the Summer of 1957.
D. Pines in “BCS: 50 Years” (World Scientific, 2011), pp.85-105

Bohr, Mottelson, and Pines
speculated that nuclear pairing
might explain the energy gap in
the excitation spectra of nuclei.
Phys. Rev. 110, 936 (1958)

They also anticipated that nuclear pairing could explain odd-even
mass staggering, and the reduced moments of inertia of nuclei.

“The present data are insufficient to indicate the limiting value
for the gap in a hypothetical infinitely large nucleus.”
Bohr, Mottelson, Pines.



Superfluidity and superconductivity in neutron stars
In the 1960’s, several superconductors had been found but 4He was
the only superfluid known (the superfluidity of 3He below 2.5 mK was
discovered by Osheroff in 1971).

Bogoliubov, who developed a microscopic theory
of superfluidity and superconductivity, was the
first to explore its application to nuclear matter.
Dokl. Ak. nauk SSSR 119, 52 (1958)

Neutron-star superfluidity was predicted by
Arkady Migdal in 1959, and first studied by
Ginzburg & Kirzhnits in 1964 before the
discovery of pulsars in 1967.
Migdal, Nucl. Phys. 13, 655 (1959)
Ginzburg & Kirzhnits, Zh. Eksp. Teor. Fiz. 47, 2006 (1964)



Superstars

The huge gravity of neutron stars produces the highest-Tc and largest
superfluids and superconductors known in the Universe!

Neutron stars ∼ 1010∼ 1010∼ 1010 K
...

...
CH8S 288 K
Cuprates 1 − 130 K
Electrons
in ordinary metals 1 − 25 K
Helium-4 2.17 K
Helium-3 2.491 × 10−3 K
Bosonic condensates ∼ 10−6 K
Fermionic condensates ∼ 10−8 K

For an overview: Chamel, J. Astrophys. Astr. 38, 43 (2017)



Classical vs superfluid hydrodynamics

A superfluid cannot be described using classical
hydrodynamics (it can flow without resistance, does not
boil, flows from cool to hot regions, etc).

Laszlo Tisza and later Lev Landau showed that two
distinct components coexist:

a superfluid that carries no entropy
a normal viscous fluid.

Tisza, Nature 141, 913 (1938); Landau, Phys. Rev. 60, 356 (1941)

Neutron stars contain three distinct components:
a neutron superfluid in the crust and in the core,
a proton superconductor in the core,
a normal viscous fluid.

Relativistic multifluid hydrodynamics is required for modelling
superfluid neutron stars.



Carter’s contribution to superfluid hydrodynamics

Brandon Carter developed an elegant variational
formalism based on differential forms and Cartan’s
exterior calculus for describing relativistic superfluid
mixtures as in the core of neutron stars.

Carter in “Relativistic fluid dynamics” (Springer-Verlag, 1989), pp.1-64
Carter, Lect. Notes Phys. 578 (Springer, 2001), 54.

credit: M. Lorenzo

This formalism relies on an action integral A =

∫
Λ{n µ

X
} dM(4) over

the 4-dimensional manifold M(4).

The Lagrangian density or “master function” Λ depends on the
4-currents n µ

X
of the different fluids X.

This formalism allows for a rigorous and systematic derivation of
hydrodynamic equations and conservation laws.



Covariant nonrelativistic superfluid hydrodynamics

The formalism was adapted to the more intricate Newtonian theory
Because Carter’s formalism relies on exterior calculus, the 4D
covariant dynamical equations take the same form!
The difference lies in the underlying spacetime structure
(absence of a spacetime metric, Galilean gauge symmetry)

Carter&Chamel, Int.J.Mod.Phys.D13,291(2004); ibid. D14,717(2005); D14,749(2005)

Note: the 3+1 version was developed by Reinhard Prix.
Prix, Phys. Rev. D 69, 043001 (2004); Phys. Rev. D71, 083006 (2005)

Why a fully 4D covariant formulation?
direct comparison with relativistic theory
conservation laws and identities can be more easily derived
using mathematical concepts from differential geometry!
matching between local (nonrelativistic) and global dynamics



Variational formulation of superfluid hydrodynamics
The hydrodynamic equations can be expressed in a very simple form.
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Using the action principle and
considering variations of the fluid
particle trajectories yield

n µ
X
ϖX
µν + πX

ν∇µn µ
X
= f X

ν

4-momentum 1-form πX
µ =

∂Λ

∂n µ
X

4-vorticity 2-form ϖX
µν = 2∇[µπ

X
ν] = ∇µπX

ν −∇νπX
µ

4-force density 1-form f X
ν

πX
µ and n µ

X
are mathematically different objects: the first is a covector,

while the second is a vector. This distinction is fundamental in
Newtonian spacetime (no metric to raise or lower indices!).



Hydrodynamical helicity
Introduced by Jean-Jacques Moreau and Robert
Betchov in 1961, helicity was rediscovered by Keith
Moffatt in 1969 and first discussed in superfluids by
Zbigniew Peradzynski in 1990.

dH
dt

= 0 , H =

∫
d3r vvv · ∇∇∇× vvv

The demonstration is rather cumbersome.

Moreau, CR Hebd. Acad. Sci. 252, 2810; Betchov, Phys. Fluids 4, 925 (1961)
Moffat, J. Fluid Mech. 35, 117 (1969); Peradzynski, Int. J. Theo. Phys. 29, 1277 (1990)

The conservation of helicity arises naturally in 4D!

Introducing the helicity 4-current η µ
X
=

1
2
εµνρσϖX

ρσπ
X
ν ,

∇µη
µ

X
=

1
4
εµνρσϖX

µνϖ
X
ρσ = 0

since ϖX
µν is of rank-2 (Euler’s eq. n µ

X
ϖX
µν = 0).

In 3+1 spacetime decomposition, the helicity conservation for fluid
mixtures reads

dHX

dt
= 0 , HX =

∫
d3r πXπXπX · ∇∇∇× πXπXπX
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Pulsar frequency glitches and superfluidity
Pulsars are spinning very rapidly with extremely stable periods
Ṗ ≳ 10−21, outperforming the best atomic clocks.
Milner et al., Phys. Rev. Lett. 123, 173201 (2019)

Still, some pulsars have been found to suddenly
spin up (in less than a minute).

664 glitches have been detected in 208 pulsars.
http://www.jb.man.ac.uk/pulsar/glitches.html

Recent review: Manchester, Proc. IAU 13 (2017)

The first glitch was detected in Vela in 1969.
Radhakrishnan&Manchester, Nature 222, 228 (1969)
Reichley&Downs, ibid. 229

The very long spin-down relaxation (up to years) provided the first
evidence for superfluidity.
Baym, Pethick, Pines, Nature 224, 673 (1969)

http://www.jb.man.ac.uk/pulsar/glitches.html


Vortex dynamics in neutron stars

A rotating superfluid is threaded by
quantized vortex lines, each of which
carries an angular momentum ℏ.

Similarly, a rotating neutron star is
threaded by ∼ 1018 vortices, as pointed
out by Ginzburg & Kirzhnits in 1964.

Yarmchuk et al., PRL43, 214 (1979)

In 1975, it was proposed that giant glitches are triggered by the
sudden unpinning of vortices in neutron-star crust.
Anderson&Itoh, Nature 256, 25 (1975)

This scenario found support from laboratory experiments on He II.
J. S. Tsakadze & S. J. Tsakadze, J. Low Temp. Phys. 39, 649 (1980)

Postglitch relaxation can be explained by vortex creep.
Pines & Alpar, Nature 316, 27(1985)



Glitches and the superfluid inertia

Giant glitches are thus interpreted as sudden transfers of angular
momentum between the superfluid and the rest of star.

The fractional moment of inertia of the superfluid component can be
inferred from pulsar-timing observations:

Is
I
≥ G , G = 2τcAg

τc =
Ω

2|Ω̇|
is the characteristic age,

Ag =
1
t

∑
i

∆Ωi

Ω
is the glitch activity.

Link, Epstein, Lattimer, Phys. Rev. Lett. 83, 3362 (1999)

Further information can be gained from individual glitches but more
model dependent.



Pulsar glitch constraint
Since 1969, 24 glitches have been regularly detected in Vela. The
latest one occurred in July 2021.

Cumulated glitch amplitude
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The cumulated glitch amplitude
increases almost linearly:∑

i

∆Ωi

Ω
= Ag t

where Ag ≃ 2.25 × 10−14 s−1

⇒ G = 2τcAg ≃ 1.62%

The analysis of other glitching pulsars leads to G ≲ 2%.

Neutron-star cores are expected to be superfluid. Why is G so small?



Entrainment and dissipation in neutron-star cores
Neutrons and protons are mutually entrained: mass currents
ρXρXρX =

∑
Y
ρXYVYVYVY are not aligned with superfluid “velocities” VXVXVX ≡ πXπXπX/mX

B
Neutron vortices thus carry a fractional
magnetic quantum flux

Φ⋆ =

∮
AAA · dℓℓℓ = kΦ0 , k =

ρpn

ρpp
,Φ0 ≡ hc

2e
Sedrakyan&Shakhabasyan, Astrofizika 8, 557 (1972);
ibid. 16, 727 (1980)

Due to electrons scattering off the magnetic field of the vortex lines,
the core superfluid is strongly coupled to the crust.
Alpar, Langer, Sauls, ApJ 282, 533 (1984)

At the scale of the star, general relativity leads to additional fluid
couplings due to frame-dragging effects!
B. Carter, Ann. Phys. 95, 53 (1975); Sourie et al., MNRAS 464, 4641(2017)



Bragg scattering of neutrons in neutron-star crusts

Carter’s insight: neutrons in the crust do not flow freely due to Bragg
diffraction by analogy with electrons in solids.
Carter, Chamel, Haensel, Nucl. Phys. A748, 675 (2005); IJMP D15, 777 (2006)

Neutrons can be diffracted by a crystal. This
is routinely used to explore the structure of
materials.

Bragg reflection means no flow in crust
frame: neutrons are entrained by the
crust!

However, Bragg’s law not satisfied for all
neutrons due to Pauli principle.

Band-structure calculations for neutrons showed that
ρnρnρn = mnns

nVnVnVn with ns
n ≪ nn independently of BCS pairing

Chamel, Nucl. Phys A747, 109 (2005)
Carter, Chamel, Haensel, Nucl. Phys. A759, 441 (2005)



Neutron superfluid fraction in shallow region
Neutron band structure (s.p. energy in MeV vs kkk ) in a body-centered
cubic (bcc) lattice at n̄ = 0.0003 fm−3 (Z = 50,A = 200):

First Brillouin zone:

Chamel,Phys.Rev.C85,035801(2012)

bcc lattice empty lattice

The spectrum is similar that of free neutrons: ns
n/nn = 83%.



Neutron superfluid fraction in deep region
Neutron band structure (s.p. energy in MeV vs kkk ) in a body-centered
cubic (bcc) lattice at n̄ = 0.03 fm−3 (Z = 40,A = 1590):

First Brillouin zone:

Chamel,Phys.Rev.C85,035801(2012)

bcc lattice empty lattice

The spectrum is very different: ns
n/nn = 7%. Neutron superfluidity is

almost entirely suppressed!



Neutron Fermi surface
Example at n̄ = 0.03 fm−3 (reduced zone scheme)



Superfluid reservoir and giant pulsar glitches
The depletion of the superfluid reservoir in the crust leads to a very
stringent pulsar glitch constraint.
Chamel&Carter,MNRAS368,796(2006)

The inferred mass of Vela is much lower
than expected from supernova
simulations and known neutron-star
masses.

At such central densities (n̄ ≈ 0.23 − 0.33
fm−3), the EoS is fairly well constrained
by laboratory experiments.

Delsate,Chamel,Gürlebeck et al., PRD94,
023008(2016)

PSR B0833-45

The superfluid in the crust does not carry enough angular
momentum. Some superfluid in the core must be also involved.
Andersson et al., PRL 109, 241103; Chamel, PRL 110, 011101 (2013)



Local hydrodynamics of neutron superfluid
The local neutron flow in the crust was studied in the strong
coupling limit adopting a purely classical hydrodynamical
treatment.

Superfluid “velocity”: VnVnVn =
ℏ

2mn
∇∇∇Φ

Incompressible superfluid flow: ∇∇∇ ·VnVnVn = 0
Spherical clusters (obstacles) with sharp surfaces.

Classical potential flow ∆Φ = 0

The neutron mass current is

ρnρnρn ≡ nnmnvnvnvn =
1

Vcell

∫
cell

nn(rrr)∇∇∇Φ(rrr)

= ns
nmnVnVnVn

ns
n is the superfluid density

vnvnvn is the true velocity

Martin&Urban,Phys.Rev.C94, 065801(2016)



Classical potential flow past obstacles
Permeability of the clusters:
δ = 0 no superfluidity,
δ = 1 superfluidity everywhere.
Martin&Urban,Phys.Rev.C94,065801(2016)

Added perturbations from
different clusters are negligible.
Epstein, ApJ333, 880 (1988) 0
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The potential flow past a single cluster can be solved analytically:

ns
n

nn
= 1 + 3

Vcl

Vcell

δ − γ

δ + 2γ
⇒ 1 − 3

2
Vcl

Vcell
≤ ns

n

nn
≤ 1 + 3

Vcl

Vcell

Magierski&Bulgac,Act.Phys.Pol.B35,1203(2004); Magierski, IJMPE13, 371(2004)
Sedrakian, Astrophys.Spa.Sci.236, 267(1996); Epstein, ApJ333, 880 (1988)

The superflow is found to be only weakly perturbed by clusters.
However, the strong coupling regime is usually not reached.



Suppression of band structure effects by pairing?

Recent band-structure calculations
suggest that ns

n is less suppressed
when pairing is taken into account within
the Hartree-Fock-Bogoliubov method

Watanabe&Pethick, PRL 119,062701(2017)
Minami & Watanabe, arXiv:2205.10742
Kashiwaba&Nakatsukasa, PRC100, 035804 (2019)
Sekizawa et al., PRC105, 045807 (2022)

But simplified 1D models. Do the
conclusions still hold in realistic 3D
models?
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Fully self-consistent 3D band structure calculations with pairing
included still remain extremely challenging!



Role of disorder

Adapting statistical 3D models of uncorrelated random impurities that
have been widely studied in the context of superconductivity in
metallic alloys:
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Glitch rise
Timing of the Crab and Vela pulsars have recently revealed very
peculiar evolutions of their spin frequency during the rise of a glitch.

Analyses of a Vela glitch in 2016 suggest a rotational-frequency
overshoot and a fast relaxation (∼ min) following the glitch.
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Ashton, Lasky, Graber, Palfreyman, Nature Astronomy 3, 1143 (2019)

A delayed spin-up has been detected in the 1989, 1996 and
2017 Crab glitches.
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Role of vortex pinning to fluxoids
These differences can be interpreted from the interactions between
superfluid vortices and proton fluxoids in neutron-star cores.
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The number Np of fluxoids attached to vortices turns out to be a key
parameter governing the global dynamics of the star:

Np < Ncrit
p : overshoot ∆Ωover < ∆Ω/(1 − Ifree

n /I),

Np > Ncrit
p : smooth spin-up on a longer timescale.

Sourie&Chamel, MNRAS 493, L98 (2020)



Role of vortex pinning to fluxoids
The behavior of Vela and Crab glitches can be reproduced:

0

10

20

30

40

50

0 40 80 120 160 200 240 280 0

5

10

15

20

0 2 4 6 8 10

However, this neutron-star model remains very simplified:
Newtonian approach
physical reason for different Np remains to be investigated
Ncrit

p depends on poorly-known mutual friction.

Alternative explanations:
Haskell et al., MNRAS 481, L146 (2018)
Gügercinoğlu&Alpar, MNRAS 488, 2275 (2019)



Microscopic dynamics of a vortex
To make progress, the dynamics of individual vortices at the smallest
scale (∼ 1 fm = 10−15 m!) needs to be better understood.

Fully self-consistent dynamical
quantum calculations using HFB
method requires supercomputers.

Piz Daint Supercomputer

Peçak, Chamel, Magierski, Wlazlowski, Phys. Rev. C 104, 055801 (2021)

Cold atoms offer another venue to study neutron-star superfluidity in
the lab.



Summary
Carter developed a very elegant formalism to describe the dynamics
of superfluids neutron stars (including vortices), both in GR and in
Newtonian theory.

His formalism has proved to be extremely powerful for
extending the models and deriving conservation laws.

Carter’s insights have lead to far-reaching astrophysical
implications!

However, some of the microscopic parameters are still
not very well determined.

The main challenge is to relate the local nonrelativistic dynamics of
vortices and fluxoids at the nuclear scale (∼ 1 fm = 10−15 m) to the
global general-relativistic dynamics of the star (∼ 10 km).


