Relativistic fluids with a twist

Nils Andersson
STAG $\underbrace{\substack{\text { RENTRE }}}_{\substack{\text { RESEARCH }}}$
Southampton

Erice 1991

EU Network meeting 2002

William Hodge, Pembroke College

George Batchelor, DAMTP

Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann
Subseries: Fondazione C.I.M.E., Firenze Adviser: Roberto Conti

1385

A. Anile Y. Choquet-Bruhat (Eds.)

Relativistic Fluid Dynamics
Noto 1987

Springer-Verlag

COVARIANT THEORY OF CONDUCTIVITY IN IDEAL FLUID OR SOLID MEDIA.

Brandon Carter

Institute for Theoretical Physics, U.C.S.B., Santa Barbara, California 93106, and
Groupe d'Astrophysique Relativiste - D.A.R.C.
C.N.R.S. - Observatoire de Paris, 92195 Meudon, France.

Contents:

Abstract.
Introduction.

1. Non-conducting multiconstituent perfect fluids.
1.1 Mathematical requisites: Cartan derivatives and Lie derivatives.
1.2 Canonical form and associated conservation laws for ideal fluid systems. 12
1.3 Standard formulation for (chemically active) perfect fluid systems.
1.4 Reduction to Canonical form in (conservative) two-constituent case.
2. Canonical two-constituent model for conducting fluid.
2.1 Worldline displacement variation principle.
2.2 Double worldline displacement variational model.

2.3 Theregularity ansatz and its

35

2.4 Causal behaviour. 40
2.5 Eckart-frame interpretation of the model. 44
3. Conductivity in multiconstituent fluid or solid media.
3.1 Mathematical requisites: convective differentiation.
3.2 Multi-worldline displacement variational formulation for conducting medium.
3.3 Chemical and resistive dissipation. 53

References.

Living Reviews in Relativity (2021) 24:3
https://doi.org/10.1007/s41114-021-00031-6
REVIEW ARTICLE

Relativistic fluid dynamics: physics for many different scales

Nils Andersson ${ }^{1}$ (D) Gregory L. Comer ${ }^{2}$

Received: 1 June 2020 / Accepted: 22 January 2021 / Published online: 24 June 2021
© The Author(s) 2021

convective variations

Convective variational principle makes use of the idea of a three dimensional "matter space".
For a single fluid Lagrangian $\Lambda=\Lambda\left(n^{2}\right)$ where $n^{2}=-n^{a} n_{a}$ we have the conjugate momentum

$$
\mu_{a}=-2 \frac{\partial \Lambda}{\partial n^{2}} n_{a}=B n_{a}
$$

A general variation leads to

$$
\delta(\sqrt{-g} \Lambda)=\sqrt{-g}\left[\mu_{a} \delta n^{a}+\frac{1}{2}\left(\Lambda g^{a b}+n^{a} \mu^{b}\right) \delta g_{a b}\right]
$$

which means that the momentum has to vanish! Clearly not what we want.
Need a constrained variation, ensuring a conserved particle flux. This follows if the associated volume form $n_{a b c}=\varepsilon_{a b c d} n^{d}$ is closed, i.e.

$$
\nabla_{[a} n_{b c d]}=0 \quad \Rightarrow \quad \nabla_{a} n^{a}=0
$$

```
spacetime (4D)
```


Introduce matter space with coordinates X^{A} and associated displacement such that

$$
\Delta X^{A}=0 \quad \Rightarrow \quad \delta X^{A}=-\xi^{a} \nabla_{a} X^{A}
$$

Then the variation leads to

$$
\delta(\sqrt{-g} \Lambda)=\sqrt{-g}\left[\frac{1}{2}\left(\Psi g^{a b}+n^{a} \mu^{b}\right) \delta g_{a b}-f_{a} \xi^{a}\right]
$$

where $\Psi=\Lambda-n^{a} \mu_{a}$.

The final equations of motion take the form:

$$
f_{a}=2 n^{b} \nabla_{[b} \mu_{a]}=2 n^{b} \omega_{a b}=0
$$

emphasize the role of the (momentum) vorticity.
Also - and this is crucial - it is now straightforward to account for several identifiable fluxes (=multi-fluid systems!).
"Simply" need several matter spaces (one for each flux);

$$
n_{\mathrm{x}}^{a}=n_{\mathrm{x}} u_{\mathrm{x}}^{a}
$$

Following the same procedure as before, we arrive at:

$$
\nabla_{a} n_{\mathrm{x}}^{a}=0
$$

$$
f_{a}^{\mathrm{x}}=2 n_{\mathrm{x}}^{b} \nabla_{[b} \mu_{a]}^{\mathrm{x}}=2 n_{\mathrm{x}}^{b} \omega_{b a}^{\mathrm{x}}=0
$$

(no summation over x).

why bother?

- "mixtures", where the components retain their identity (chemistry).
- superfluids, where finite temperature excitations (e.g. phonons) lead to a two-fluid model (condensed matter physics)
- heat flow, where the entropy (say, phonons) may be treated as a "fluid" (non-equilibrium thermodynamics)
- electromagnetism, where a charge current is required to maintain the magnetic field (plasma physics)
- elasticity, where the matter space approach provides a natural description of deformations (solid state physics)

Strong motivation for trying to understand these systems in general relativity, ranging from neutron star astrophysics to early Universe cosmology.

Interesting connections with laboratory atomic Bose-Einstein condensates, where the Hamiltonian can be "designed to specification".
Depending on the situation under consideration, the force f_{a}^{x} encodes additional physics, like dissipation, elasticity, mutual interaction forces...

towards dissipation

In order to model "reality", we need to account for dissipation (friction, thermal conductivity, resistivity etc).
Disregarding conventional wisdom, according to which action principles do not exist for dissipative systems, we have extended the variational approach in this direction.
How? The key conceptual step involves breaking the closure of the individual volume forms.
For example, if each $n_{a b c}^{\mathrm{x}}$ is no longer just a function of its own X_{x}^{A}, the closure will be broken. As the fluxes are no longer conserved, the formalism incorporates dissipation (in some sense). In general, we have

$$
\delta n_{a b c}^{\mathrm{x}}=-\mathcal{L}_{\xi_{\mathrm{x}}} n_{a b c}^{\mathrm{x}}+\frac{\partial X_{\mathrm{x}}^{A}}{\partial x^{[a}} \frac{\partial X_{\mathrm{x}}^{B}}{\partial x^{b}} \frac{\partial X_{\mathrm{x}}^{C}}{\partial x^{c]}} \Delta_{\mathrm{x}} n_{A B C}^{\mathrm{x}} .
$$

In practice, we may let each volume form depend on:
(1) the coordinates of all the matter spaces, and
(2) the independent mappings of the spacetime metric into these spaces.

Intuition: The individual matter space coordinates do not vary along their own world lines, even when the system is dissipative. By adding a dependence on the other matter spaces there is "evolution" since the world lines cut across each other.

Application: When each volume form depends on all sets of matter space coordinates we arrive at a model for reactive/resistive systems.

$$
R_{a}^{\mathrm{xy}} \equiv \frac{1}{3!} \mu_{\mathrm{x}}^{A B C} \frac{\partial n_{A B C}^{\mathrm{x}}}{\partial X_{\mathrm{y}}^{D}} \partial_{a} X_{\mathrm{y}}^{D} \quad R_{a}^{\mathrm{x}}=\sum_{\mathrm{y} \neq \mathrm{x}}\left(R_{a}^{\mathrm{yx}}-R_{a}^{\mathrm{xy}}\right)
$$

and, introducing the individual creation/destruction rates

$$
\Gamma_{\mathrm{x}}=\nabla_{a} n_{\mathrm{x}}^{a}
$$

it follows that

$$
2 n_{\mathrm{x}}^{a} \nabla_{[a} \mu_{b]}^{\mathrm{x}}+\Gamma_{\mathrm{x}} \perp_{\mathrm{x} b}^{a} \mu_{a}^{\mathrm{x}}=\perp_{\mathrm{x} b}^{a} R_{a}^{\mathrm{x}}
$$

take home message

Happy Birthday!

