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convective variations

Convective variational principle makes use of the idea of a three dimensional
“matter space”.

For a single fluid Lagrangian A=A (n?) where n’=-nn, we have the
conjugate momentum

oA

u =-2—n =Bn_
on’

A general variation leads to
6(\/—gA) =4/-g

which means that the momentum has to vanish! Clearly not what we want.

u on® + %(Ag“b +nu’ ) 6gab]

Need a constrained variation, ensuring a conserved particle flux. This follows
. . d - .
if the associated volume form n , =¢ , n" isclosed, i.e.

V.n =0 = Van“=0

[a bcd]



spacetime (4D) matter space (3D)

X

Introduce matter space with coordinates X? and associated displacement such

that
AX'=0 = 0J0X"'=-£V X"

Then the variation leads to

5(\/;A)=\/§

where ¥ =A-n‘u .
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many fluids

The final equations of motion take the form:

S = anV[bua] = 2nba)ab =0

emphasize the role of the (momentum) vorticity.

Also - and this is crucial - it is now straightforward to account for several
identifiable fluxes (=multi-fluid systems!).

“Simply” need several matter spaces (one for each flux);

a _ a “X3
n.=nu f e o
Following the same procedure as ; o’ I &
. e .
before, we arrive at: e
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why bother?

- “mixtures”, where the components retain their identity (chemistry).

- superfluids, where finite temperature excitations (e.g. phonons) lead to a
two-fluid model (condensed matter physics)

— heat flow, where the entropy (say, phonons) may be treated as a “fluid”
(non-equilibrium thermodynamics)

- electromagnetism, where a charge current is required to maintain the
magnetic field (plasma physics)

- elasticity, where the matter space approach provides a natural description
of deformations (solid state physics)

Strong motivation for trying to understand these systems in general relativity,
ranging from neutron star astrophysics to early Universe cosmology.

Interesting connections with laboratory atomic Bose-Einstein condensates,
where the Hamiltonian can be “designed to specification”.

Depending on the situation under consideration, the force /., encodes
additional physics, like dissipation, elasticity, mutual interaction forces...



towards dissipation

In order to model “reality”, we need to account for dissipation (friction,
thermal conductivity, resistivity etc).

Disregarding conventional wisdom, according to which action principles do
not exist for dissipative systems, we have extended the variational approach
in this direction.

How? The key conceptual step involves breaking the closure of the individual
volume forms.

. . . . . A
For example, if each 7, is no longer just a function of its own X, the
closure will be broken. As the fluxes are no longer conserved, the formalism
incorporates dissipation (in some sense). In general, we have

oXA ox P ox’
oxle ox? ox¢

In practice, we may let each volume form depend on:

X
x N ABC:

5n;bc = _ﬁfxnaxbc +

(1) the coordinates of all the matter spaces, and

(2) the independent mappings of the spacetime metric into these spaces.



Intuition: The individual matter space
coordinates do not vary along their own
world lines, even when the system is
dissipative. By adding a dependence on the
other matter spaces there is “evolution” since
the world lines cut across each other.

Application: When each volume form
depends on all sets of matter space
coordinates we arrive at a model for
reactive/resistive systems.

1 on
Xy — ABC Y""ABC D X __ yX _ pXy
R) =K XD ——=0,X, R} = z:(Ra R})
y#X

and, introducing the individual creation/destruction rates
Iy = Val’lf

it follows that

20 Vi + il ) = L5 R
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