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For a single fluid Lagrangian Λ=Λ(n2) where n2=-nana we have the 
conjugate momentum

A general variation leads to

Convective variational principle makes use of the idea of a three dimensional 
“matter space”.

µa = −2
∂Λ

∂n2
na = Bna

which means that the momentum has to vanish! Clearly not what we want.
Need a constrained variation, ensuring a conserved particle flux. This follows 
if the associated volume form                           is closed, i.e.  

δ −gΛ( ) = −g µaδn
a +
1
2
Λgab + naµb( )δgab

⎡

⎣
⎢

⎤

⎦
⎥

∇ a⎡⎣
nbcd⎤⎦ = 0   ⇒   ∇an

a = 0

nabc = εabcdn
d

convective variations



Introduce matter space with coordinates XA and associated displacement such 
that

Then the variation leads to

where                          .  

δ −gΛ( ) = −g 1
2
Ψgab + naµb( )δgab − faξ a

⎡

⎣
⎢

⎤

⎦
⎥The variational construction involves three key steps. First we note that the conservation

of the individual fluxes is ensured provided that the dual three-form

ϵ ϵ= =n n n n,
1
3!

, (5)abc abcd
d a abcd

bcd
x

x x
x

(where ϵabcd is the usual volume form associated with the spacetime) is closed;

� �= ⟶ =n n0 0 (6)a bcd a
a

[ ]
x

x

(the square brackets indicate anti-symmetrization, as usual). In the second step we make use
of the matter space to construct three-forms that are automatically closed on spacetime;

= ∂
∂

∂
∂

∂
∂

n
X

x

X

x

X

x
n , (7)abc

A

a

B

b

C

c ABC
x x

[
x x

]
x

where the Einstein summation convention applies to repeated matter space indices A, B, C.
Here, and in the following, we use notation such that a spacetime object and its matter space
image are represented by the same symbol, with only the indices being different (i.e.

↔n nabc ABC
x x ). The volume form nABC

x , which is assumed to be anti-symmetric, provides
matter space with a geometric structure. If integrated over a volume in matter space it
provides a measure of the number of particles in that volume.

With the above definition, the three form (7) is closed provided nABC
x is a function of the

X A
x . In other words, if we take the scalar fields X A

x to be the fundamental variables3 they yield
a representation for each particle number density current that is automatically conserved.
Hence, it is natural to express the variations of the spacetime three-form in terms of the X A

x .

Figure 1. An illustration of the pull-back formalism, where a given fluid is associated
with a three-dimensional matter space. The coordinates of this space, XA, essentially
label the flowlines τx ( )a , where τ is a suitable parameter along each curve, of the
various fluid elements in spacetime. These labels are assigned at the initial time of
evolution, say t = 0, and remain unchanged throughout.

3 It is worth pointing out that one can easily construct a variational model where the scalar fields X A
x are the primary

variables, satisfying the standard Euler–Lagrange equations (see [74, 75] for early work in this direction). This
approach, recently explored in [76–80], is simply a reformulation of Carter’s model which forms the basis of our
work [34, 39].
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ΔX A = 0     ⇒     δX A = −ξ a∇a X
A

Ψ = Λ− naµa



The final equations of motion take the form:

emphasize the role of the (momentum) vorticity.
Also – and this is crucial – it is now straightforward to account for several 
identifiable fluxes (=multi-fluid systems!). 

fa = 2n
b∇[bµa] = 2n

bωab = 0

The final step involves introducing Lagrangian displacements ξ a
x for each fluid. These

displacements track the movement of the worldline of a given fluid element. From the
standard definition of Lagrangian variations in the relativistic context, see for example
[81, 82], we have

Δ δ= + =ξX X X 0, (8)A A A
x x x xx

where δX A
x is the Eulerian variation and ξx is the Lie derivative along ξ a

x . This means that

convective variations are such that (since X A
x acts as a scalar field on spacetime)

δ ξ= − = − ∂
∂ξX X
X

x
. (9)A A a

A

ax x x
x

x

After some algebra, one finds that this leads to

Δ =n 0, (10)abcx
x

which in turn implies

� � �δ ξ ξ ξ δ= − − +n n n n g g
1
2

. (11)a b
b

a b
b

a a
b

b bc
bcx x x x x x x⎜ ⎟⎛

⎝
⎞
⎠

This is the result we require. By expressing the variations of the matter Lagrangian in terms of
the displacements ξ a

x we ensure that the flux conservation is accounted for in the equations of
motion. The variation of Λ now leads to

∑ ∑δ Λ Ψδ μ δ ξ− = − + −( )g g n g g f
1
2

, (12)a
b

a
b

bc
ac a

a

x
x

x

x

x
x

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

Figure 2. In the case of systems with several coupled fluids each component can be
associated with its own three-dimensional matter space. The coordinates of this space,
X A

x , which label the flowlines of the various fluid elements in spacetime, are assigned at
the initial time of evolution, say t = 0. The illustration relates to a problem with two
constituents, labelled x = r(ed) and x = b(lue). The map between each matter space and
spacetime plays a key role in establishing the conservation of the matter flows in the
variational model.
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fa
x = 2nx

b∇[bµa]
x = 2nx

bωba
x = 0

(no summation over x).

Following the same procedure as 
before, we arrive at:  

nx
a = nxux

a

“Simply” need several matter spaces (one for each flux);

∇anx
a = 0

many fluids



- “mixtures”, where the components retain their identity (chemistry).
- superfluids, where finite temperature excitations (e.g. phonons) lead to a 

two-fluid model (condensed matter physics)
- heat flow, where the entropy (say, phonons) may be treated as a “fluid” 

(non-equilibrium thermodynamics)
- electromagnetism, where a charge current is required to maintain the 

magnetic field (plasma physics)
- elasticity, where the matter space approach provides a natural description 

of deformations (solid state physics) 
Strong motivation for trying to understand these systems in general relativity, 
ranging from neutron star astrophysics to early Universe cosmology.
Interesting connections with laboratory atomic Bose-Einstein condensates, 
where the Hamiltonian can be “designed to specification”.
Depending on the situation under consideration, the force       encodes 
additional physics, like dissipation, elasticity, mutual interaction forces… 

fa
x

why bother?



In order to model “reality”, we need to account for dissipation (friction, 
thermal conductivity, resistivity etc). 

Disregarding conventional wisdom, according to which action principles do 
not exist for dissipative systems, we have extended the variational approach 
in this direction. 

How? The key conceptual step involves breaking the closure of the individual 
volume forms.

For example, if each         is no longer just a function of its own , the 
closure will be broken. As the fluxes are no longer conserved, the formalism 
incorporates dissipation (in some sense). In general, we have

In practice, we may let each volume form depend on: 

(1) the coordinates of all the matter spaces, and 

(2) the independent mappings of the spacetime metric into these spaces. 

nabc
x X x

A

space objects [72]. In particular, the number density follows from

= − = =n g n n g g g n n g g g n n
1
3!

1
3!

, (25)ab
a b ad be cf

abc def
AD BE CF

ABC DEFx
2

x x
x x

x x
x x

while the chemical potential

μ μ= −u (26)a
a

x
x

x

(according to an observer at rest in the respective fluid’s frame) can be obtained from

μ μ μ μ= − = =n n n n
1
3!

1
3!

. (27)a
a

abc
abc

ABC
ABCx

x
x

x
x

x
x

x

Here we have introduced the dual to the momentum μa
x;

μ ϵ μ μ ϵ μ= =,
1
3!

, (28)abc abcd
d a abcd

bcd
x

x x
x

and its matter space image;

μ μ= ∂
∂

∂
∂

∂
∂

X

x

X

x

X

x
. (29)ABC

A

a

B

b

C

c
abc

x
x
[

x x
] x

The key take-home message is that we can think of the matter action as being constructed
entirely from matter space quantities. In the simplest case of a single component one would
have Λ Λ Λ= ↔( ) ( )n n g n g( ) , ,abc

ab
ABC

AB
x

x x
x . The specification of such an equation of state,

with the functional dependencies discussed later, will eventually be required in order to
complete the model we are designing. For the moment, we assume that this problem can be
dealt with and move on to the actual variational equations of motion.

3.2. Proof-of-principle: a reactive/resistive system

As a first step towards making the proposal concrete, let us work through the key steps in the
variational analysis, this time allowing for general variations of the matter space density. The
matter space coordinates still vary according to (9) (this is essentially just the definition of the
Lagrangian displacement). Noting that

Δ Δ∂
∂ = ∂

∂ =( )X

x x
X 0, (30)

A

a a
A

x
x

x x

⎛
⎝⎜

⎞
⎠⎟

we easily arrive at the generic variation

δ Δ= − + ∂
∂

∂
∂

∂
∂ξn n

X

x

X

x

X

x
n . (31)abc abc

A

a

B

b

C

c ABC
x x x

[
x x

] x
x

x

To make contact with (11) we need

μ δ μ δ ϵ μ δ μ δϵ= = − +( )n n n n
1
3!

1
3!

1
3!

, (32)a
a

a
abcd

bcd
bcd

bcd a bcd
abcdx

x
x x

x
x x x

and [39]

δϵ ϵ δ= − g g
1
2

. (33)abcd abcd ef
ef
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towards dissipation



Intuition: The individual matter space 
coordinates do not vary along their own 
world lines, even when the system is 
dissipative. By adding a dependence on the 
other matter spaces there is “evolution” since 
the world lines cut across each other. 
Application: When each volume form 
depends on all sets of matter space 
coordinates we arrive at a model for 
reactive/resistive systems.

orthogonal (on each index). This holds for the present problem, since the operator which
generates projections orthogonal to x-fluid worldlines is

⊥ = +g u u , (22)ab ab a b
x x x

and because of equation (18) we have

= ∂
∂

∂
∂

= ∂
∂

∂
∂

⊥g
X

x

X

x
g

X

x

X

x
. (23)AB

A

a

B

b
ab

A

a

B

b
ab

x
x x x x

x

The second condition that ⊥ab
x must satisfy so that g AB

x is a matter space tensor is [70]

 ⊥ = 0. (24)u
ab
xx

This is not the case here; indeed, it is too severe for most relevant applications.
Anyway, it is easy to show that a scalar constructed from the contraction involving gab

and some tensor …ta
x is identical to the analogous contraction of the corresponding matter

Figure 3.An illustration of the notion that a coupling between matter spaces can lead to
dissipation. We consider the case of two fluids, labelled r and b (for red and blue). The
individual X A

x (assigned at the initial time, t = 0) do not vary along their own
worldlines, even when the system is dissipative. By adding X A

y ( ≠y x) we get
‘evolution’ since the worldlines cut across each other. Let us choose a particular
worldline of the r-fluid, say X A

r,0, meaning that X A
r will take the same value at each

spacetime point xa along the worldline. At an intersection with a worldline of a fluid
element of the b-fluid (the point labelled 1 in the figure, say) the other fluid’s worldline
will have its own label (in this case X A

b,1), which is the same at every point on that
worldline. At the next intersection (point 2), the worldline we are following has the
same value for X A

r , but it is intersected by a different worldline from the other fluid
(X A

b,2), meaning that X A
b at each intersection is different. Hence, X A

b , when considered
as a field in spacetime, must vary along the r-fluid worldlines, and vice versa. This is
how the closure of the individual volume three-forms is broken and ultimately why the
model is dissipative.
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and, introducing the individual creation/destruction rates

it follows that 

Hence, we arrive at

μ δ μ μ δ μ Δ= − −ξn n n g g n
1
3!

1
2

1
3!

, (34)a
a abc

abc a
a bc

bc
ABC

ABC
x

x x
x x

x x x
x

x

and the ‘final’ expression:

� � �μ δ μ ξ ξ ξ δ μ Δ= − − − −n n n n n g g n
1
2

1
3!

. (35)a
a

a
b

b
a b

b
a a

b
b a bc

bc
ABC

ABC
x

x
x

x x x x x x x x x
x⎜ ⎟⎛

⎝
⎞
⎠

The terms in the bracket are the same as in the conservative case, see (11). The last term
is new.

The functional dependence of the volume form for a given fluid’s matter space is the
main input for what follows. Obviously, nABC

x must depend on X A
x , the coordinates of the

corresponding matter space. This leads to the conservative dynamics. Adding to this, let us
include the coordinates X A

y from the other, ≠y x, matter spaces. As we have already seen,
this breaks the closure of nabc

x .
The required variation of nABC

x is now (in view of (8))

∑ ∑Δ Δ ξ ξ= ∂
∂

= ∂
∂

− ∂
≠ ≠

( )n
n

X
X

n

X
X . (36)ABC

ABC
D

D ABC
D

a a
a

D
x

x

y x

x

y
x y

y x

x

y
x y y

Comparing to (34), we see that it is natural to define

μ≡ ∂
∂

∂R
n

X
X

1
3!

. (37)a
ABC ABC

D a
Dxy

x

x

y
y

We then have

� � � ∑μ δ μ ξ ξ ξ δ ξ ξ= − − − + −
≠

( )n n n n n g g R
1
2

. (38)a
a

a
b

b
a b

b
a a

b
b a bc

bc a
a ax

x
x

x x x x x x x
y x

xy
y x⎜ ⎟⎛

⎝
⎞
⎠

The final step of the exercise involves writing down the variation of the matter
Lagrangian, Λ. Starting from (1), we arrive at

∑ ∑δ Λ μ Γ ξ Ψ μ δ− = − − + − − +( )( )g g f R g n g
1
2

, (39)a a a
a ab a b

ab
x

x x
x

x
x

x
x x

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

where we have used

∑∑ ∑∑ξ ξ=
≠ ≠

R R . (40)a
a

a
a

x y x

xy
y

x y x

yx
x

We have also defined

∑= −
≠

( )R R R , (41)a a a
x

y x

yx xy

and

�Γ = n . (42)a
a

x x

Hence, the individual components are governed by the equations of motion

Γ μ ω Γ μ+ = + =f n R . (43)a a
b

ba a a
x

x
x

x
x

x
x x

Since the force term fa
x on the left-hand side is orthogonal to n a

x (by the anti-symmetry of
ωab

x ) it is easy to see that this result implies that the particle creation/destruction rates are
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given by

Γ μ= − u R
1

. (44)a
ax x x
x

Finally, an orthogonal projection of (43) leads to

� μ Γ μ+ ⊥ = ⊥n R2 . (45)a
a b b

a
a b

a
ax [ ]

x
x x

x
x

x

These equations provide the dissipative equations of motion for this system.
With equation (39) we have a true action principle—in the sense that the field equations

are extrema of the action—for a system of fluids that includes dissipation. In many ways, this
demonstration is the key result of this work.

Before we move on, it is worth noting that the stress–energy tensor is still given by (16)
and we can show that

� ∑ μ Γ= + =( )T f 0, (46)b
b

a a a
x

x x
x

because

∑ =R 0, (47)a
x

x

identically. The requirement that the covariant divergence of the stress–energy tensor vanish
is automatically guaranteed by the dissipative fluid equations, in keeping with the
diffeomorphism invariance of the theory.

3.3. The problem of heat revisited

In much of the relevant literature, dissipative terms have been added to the equations of
relativistic fluid dynamics in a somewhat ad hoc manner, inspired by some level of intuition
of how the system ‘ought to behave’ (for recent examples, see [50, 94–102]). The model
developed in the previous section puts us in a rather different position as the dissipative
contributions were derived, not postulated. This leads to a number of interesting (and chal-
lenging) questions, most of which we are not in a position to answer at this point. It is,
however, imperative that we establish that the construction ‘makes sense’. To do this, we
need to understand the physics content of the model.

In order to gain insight, let us consider the simplest relevant setting. Assume that we
consider a system with two components; matter (labelled n) and heat, represented by the
entropy (labelled s). In principle, we need to provide an equation of state (that satisfies
relevant physics constraints) in order to complete the model. Once this is provided we can
calculate the resistivity coefficients from (37) and then model the system using the
momentum equation (43). However, a discussion of suitable equations of state would force
our attention away from the main focus here, the variational model itself. Hence, we prefer to
consider the problem from a phenomenological point-of-view. This is sufficient if our main
aim is to show that the model has the anticipated features. To make the model specific, let us
assume that the matter component is conserved, but the entropy does not need to be. This is
the problem of relativistic heat flow. This problem was recently considered in [30, 31], and it
is useful to compare the present model to the results of that analysis. This problem is simple
enough that we should be able to understand what is going on.
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Hence, we arrive at

μ δ μ μ δ μ Δ= − −ξn n n g g n
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1
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and the ‘final’ expression:
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The terms in the bracket are the same as in the conservative case, see (11). The last term
is new.

The functional dependence of the volume form for a given fluid’s matter space is the
main input for what follows. Obviously, nABC

x must depend on X A
x , the coordinates of the

corresponding matter space. This leads to the conservative dynamics. Adding to this, let us
include the coordinates X A

y from the other, ≠y x, matter spaces. As we have already seen,
this breaks the closure of nabc

x .
The required variation of nABC

x is now (in view of (8))
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∂
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1
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Dxy
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We then have
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The final step of the exercise involves writing down the variation of the matter
Lagrangian, Λ. Starting from (1), we arrive at

∑ ∑δ Λ μ Γ ξ Ψ μ δ− = − − + − − +( )( )g g f R g n g
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where we have used
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≠ ≠

R R . (40)a
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x y x
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x y x
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We have also defined

∑= −
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( )R R R , (41)a a a
x

y x

yx xy

and

�Γ = n . (42)a
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x x

Hence, the individual components are governed by the equations of motion

Γ μ ω Γ μ+ = + =f n R . (43)a a
b

ba a a
x

x
x

x
x

x
x x

Since the force term fa
x on the left-hand side is orthogonal to n a

x (by the anti-symmetry of
ωab

x ) it is easy to see that this result implies that the particle creation/destruction rates are
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The terms in the bracket are the same as in the conservative case, see (11). The last term
is new.

The functional dependence of the volume form for a given fluid’s matter space is the
main input for what follows. Obviously, nABC

x must depend on X A
x , the coordinates of the

corresponding matter space. This leads to the conservative dynamics. Adding to this, let us
include the coordinates X A

y from the other, ≠y x, matter spaces. As we have already seen,
this breaks the closure of nabc

x .
The required variation of nABC

x is now (in view of (8))
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The final step of the exercise involves writing down the variation of the matter
Lagrangian, Λ. Starting from (1), we arrive at

∑ ∑δ Λ μ Γ ξ Ψ μ δ− = − − + − − +( )( )g g f R g n g
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Hence, the individual components are governed by the equations of motion

Γ μ ω Γ μ+ = + =f n R . (43)a a
b

ba a a
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Since the force term fa
x on the left-hand side is orthogonal to n a

x (by the anti-symmetry of
ωab

x ) it is easy to see that this result implies that the particle creation/destruction rates are
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take home message

Happy Birthday!


