Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Holes Globular Conclusions

Supermassive Black Holes from Superconducting Cosmic Strings

Robert Brandenberger McGill University

Workshop in Honour of Brandon Carter, IAP, July 4 - 6 2022

Work in collaboration with B. Cyr and H. Jiao, arXiv:2202.01799

What I am not talking about

S. Brahma, RB, S. Laliberte, arXiv:2206.12468

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

Conclusions

Emergent metric space-time from BFSS matrix model

- Starting point: BFSS matrix model in a high temperature state.
- Theory of 10 Hermitean $N \times N$ matrices A_{μ} , $N \rightarrow \infty$ limit.
- Emergent continuous and infinite time from A₀ matrix.
- Emergent continuous and infinite space from *A_i* matrices
- Phase transition: $SO(9) \rightarrow SO(3) \times SO(6)$, only three dimensions become macroscopic.
- Emergent spatial metric $g_{ij}(t) = A(t)\delta_{ij}$: spatially flat.
- Thermal fluctuations → scale-invariant spectra of density fluctuations and gravitational waves. (S. Brahma, RB and S. Laliberte, arXiv:2107.11512).

What I am not talking about

S. Brahma, RB, S. Laliberte, arXiv:2206.12468

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

Conclusions

Emergent metric space-time from BFSS matrix model

- Starting point: BFSS matrix model in a high temperature state.
- Theory of 10 Hermitean $N \times N$ matrices A_{μ} , $N \rightarrow \infty$ limit.
- Emergent continuous and infinite time from A₀ matrix.
- Emergent continuous and infinite space from *A_i* matrices
- Phase transition: S0(9) → SO(3) × SO(6), only three dimensions become macroscopic.

• Emergent spatial metric $g_{ij}(t) = A(t)\delta_{ij}$: spatially flat.

 Thermal fluctuations → scale-invariant spectra of density fluctuations and gravitational waves. (S. Brahma, RB and S. Laliberte, arXiv:2107.11512).

Supermassive black holes from superconducting cosmic strings B. Cyr, H. Jiao and RB, arXiv:2202.01799, MNRAS, in press

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Globular

- Black Holes: one focal point of Brandon's research.
- Superconducting cosmic strings: another focal point of Brandon's research.
- This talk: Combination of these two interests of Brandon.
- Loops of superconducting cosmic strings can seed direct collapse black hole formation at high redshifts.
- → explanation for the origin and abundance of observed high redshift super-massive black holes.

Supermassive black holes from superconducting cosmic strings B. Cyr, H. Jiao and RB, arXiv:2202.01799, MNRAS, in press

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Ho

Globular

- Black Holes: one focal point of Brandon's research.
- Superconducting cosmic strings: another focal point of Brandon's research.
- This talk: Combination of these two interests of Brandon.
- Loops of superconducting cosmic strings can seed direct collapse black hole formation at high redshifts.
- → explanation for the origin and abundance of observed high redshift super-massive black holes.

Supermassive black holes from superconducting cosmic strings

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

DIGORTIO

Globular

- Black Holes: one focal point of Brandon's research.
- Superconducting cosmic strings: another focal point of Brandon's research.
- This talk: Combination of these two interests of Brandon.
- Loops of superconducting cosmic strings can seed direct collapse black hole formation at high redshifts.
- → explanation for the origin and abundance of observed high redshift super-massive black holes.

Outline

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Hole: Globular Conclusion

- Observational Challenge
- 2 Cosmic String Review
- 3 Super-Massive High Redshift Black Holes from Superconducting Cosmic Strings

Globular Clusters from Cosmic Strings

Plan

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Holes Globular Conclusions

Observational Challenge

Cosmic String Review

Super-Massive High Redshift Black Holes from Superconducting Cosmic Strings

Globular Clusters from Cosmic Strings

High Redshift Super-Massive Black Holes: Challenge for Standard ACDM Paradigm

- Cosmic Strings
- R. Brandenberger

Challenge

- Black holes with masses M > 10⁹M_☉ observed at redshifts z > 6.
- Accretion bounded by Eddington rate.
- ullet ightarrow high mass nonlinear seeds required at early times.
- Standard ACDM model: probability of such nonlinear seeds exponentially suppressed.

High Redshift Super-Massive Black Holes: Challenge for Standard ACDM Paradigm

- Cosmic Strings
- R. Brandenberger

Challenge

- Black holes with masses $M > 10^9 M_{\odot}$ observed at redshifts z > 6.
- Accretion bounded by Eddington rate.
- ullet ightarrow high mass nonlinear seeds required at early times.
- Standard ACDM model: probability of such nonlinear seeds exponentially suppressed.

Required Seed Mass (Eddington Accretion)

Abundance of nonlinear overdensities in standard ΛCDM model

8/33

Cosmic Strings to the Rescue

T. Kibble, J. Phys. A **9**, 1387 (1976); Y. B. Zeldovich, Mon. Not. Roy. Astron. Soc. **192**, 663 (1980); A. Vilenkin, Phys. Rev. Lett. **46**, 1169 (1981).

- Cosmic Strings
- R. Brandenberger

Challenge

- Assume: theory which describes our matter has cosmic string solutions.
- $\bullet \rightarrow$ scaling distribution of strings at all times.
- $\bullet\,$ Cosmic string loops $\to\,$ nonlinear perturbations at high redshifts.
- $\bullet \rightarrow$ more massive seeds which have more time to grow.
- ullet ightarrow solution of the supermassive black hole mystery.

Abundance of nonlinear overdensities due to cosmic strings

S. Bramberger, R.B., P. Jreidnin and J. Quintin, arXiv:1503.02317

Abundance of nonlinear overdensities due to cosmic strings

S. Bramberger, R.B., P. Jreidnin and J. Quintin, arXiv:1503.02317

Cosmic Strings

R. Brandenberger

Challenge

- Nonlinear seeds of sufficient mass is a necessary but not a sufficient criterion for black hole formation.
- The mass needs to collapse to within its Schwarzschild radius.
- $\bullet~$ In general a collapsing cloud will fragment \rightarrow no black hole formation.
- Presence of Lyman-Werner radiation can prevent the fragmentation.
- Superconducting cosmic strings produce Lyman-Werner radiation.
- Superconducting cosmic string loops \rightarrow direct collapse black hole formation.

Cosmic Strings

R. Brandenberger

Challenge

- Nonlinear seeds of sufficient mass is a necessary but not a sufficient criterion for black hole formation.
- The mass needs to collapse to within its Schwarzschild radius.
- $\bullet~$ In general a collapsing cloud will fragment \rightarrow no black hole formation.
- Presence of Lyman-Werner radiation can prevent the fragmentation.
- Superconducting cosmic strings produce Lyman-Werner radiation.
- Superconducting cosmic string loops \rightarrow direct collapse black hole formation.

Cosmic Strings

R. Brandenberger

Challenge

- Nonlinear seeds of sufficient mass is a necessary but not a sufficient criterion for black hole formation.
- The mass needs to collapse to within its Schwarzschild radius.
- $\bullet~$ In general a collapsing cloud will fragment \rightarrow no black hole formation.
- Presence of Lyman-Werner radiation can prevent the fragmentation.
 - Superconducting cosmic strings produce Lyman-Werner radiation.
- Superconducting cosmic string loops \rightarrow direct collapse black hole formation.

Cosmic Strings

R. Brandenberger

Challenge

- Nonlinear seeds of sufficient mass is a necessary but not a sufficient criterion for black hole formation.
- The mass needs to collapse to within its Schwarzschild radius.
- $\bullet~$ In general a collapsing cloud will fragment \rightarrow no black hole formation.
- Presence of Lyman-Werner radiation can prevent the fragmentation.
- Superconducting cosmic strings produce Lyman-Werner radiation.
- Superconducting cosmic string loops \rightarrow direct collapse black hole formation.

Plan

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Holes Globular

Observational Challenge

2 Cosmic String Review

Super-Massive High Redshift Black Holes from Superconducting Cosmic Strings

Globular Clusters from Cosmic Strings

Cosmic Strings

T. Kibble, J. Phys. A **9**, 1387 (1976); Y. B. Zeldovich, Mon. Not. Roy. Astron. Soc. **192**, 663 (1980); A. Vilenkin, Phys. Rev. Lett. **46**, 1169 (1981).

Cosmic Strings

- R. Brandenberger
- Challenge

Cosmic Strings

- Black Holes
- Globular
- Conclusions

- Cosmic string = linear topological defect in a quantum field theory.
- 1st analog: line defect in a crystal
- 2nd analog: vortex line in superfluid or superconductor
- Cosmic string = line of trapped energy density in a quantum field theory.
- Trapped energy density → gravitational effects on space-time → important in cosmology.

Relevance to Particle Physics I

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular

- Cosmic string solutions exist in many particle physics models beyond the "Standard Model".
- In models which admit cosmic strings, cosmic strings inevitably form in the early universe and persist to the present time.
- Seeing a cosmic string in the sky would provide a guide to particle physics beyond the Standard Model!
- Cosmic strings approach a **scaling solution**: the statistical properties of the string network is independent of time if all length are scaled to the Hubble radius.
- Scaling solution is independent of the string tension.
- String network consists of long strings and string loops.

Relevance to Particle Physics I

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular

- Cosmic string solutions exist in many particle physics models beyond the "Standard Model".
- In models which admit cosmic strings, cosmic strings inevitably form in the early universe and persist to the present time.
- Seeing a cosmic string in the sky would provide a guide to particle physics beyond the Standard Model!
- Cosmic strings approach a **scaling solution**: the statistical properties of the string network is independent of time if all length are scaled to the Hubble radius.
- Scaling solution is independent of the string tension.
- String network consists of **long strings** and **string loops**.

Relevance to Particle Physics II

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- Cosmic strings are characterized by their tension μ which is associated with the energy scale η at which the strings form ($\mu \sim \eta^2$).
- Searching for the signatures of cosmic strings is a tool to probe physics beyond the Standard Model at energy ranges complementary to those probed by the LHC.
- Cosmic strings are constrained from cosmology: $G\mu \le 1.3 \times 10^{-7}$ otherwise a conflict with the observed acoustic oscillations in the CMB angular power spectrum (Dvorkin, Hu and Wyman, 2011).
- String loops oscillate and emit gravitational waves.
- Constraints as low as $G\mu < 10^{-10}$ follow from pulsar timing constraints on the amplitude of the spectrum of stochastic GW background.
- Existing upper bound on the string tension rules out large classes of "Grand Unified" models.

Relevance to Particle Physics II

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- Cosmic strings are characterized by their tension μ which is associated with the energy scale η at which the strings form ($\mu \sim \eta^2$).
- Searching for the signatures of cosmic strings is a tool to probe physics beyond the Standard Model at energy ranges complementary to those probed by the LHC.
- Cosmic strings are constrained from cosmology: $G\mu \le 1.3 \times 10^{-7}$ otherwise a conflict with the observed acoustic oscillations in the CMB angular power spectrum (Dvorkin, Hu and Wyman, 2011).
- String loops oscillate and emit gravitational waves.
- Constraints as low as $G\mu < 10^{-10}$ follow from pulsar timing constraints on the amplitude of the spectrum of stochastic GW background.
- Existing upper bound on the string tension rules out large classes of "Grand Unified" models.

Relevance to Particle Physics II

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- Cosmic strings are characterized by their tension μ which is associated with the energy scale η at which the strings form ($\mu \sim \eta^2$).
- Searching for the signatures of cosmic strings is a tool to probe physics beyond the Standard Model at energy ranges complementary to those probed by the LHC.
- Cosmic strings are constrained from cosmology: $G\mu \le 1.3 \times 10^{-7}$ otherwise a conflict with the observed acoustic oscillations in the CMB angular power spectrum (Dvorkin, Hu and Wyman, 2011).
- String loops oscillate and emit gravitational waves.
- Constraints as low as $G\mu < 10^{-10}$ follow from pulsar timing constraints on the amplitude of the spectrum of stochastic GW background.
- Existing upper bound on the string tension rules out large classes of "Grand Unified" models.

Relevance to Cosmology

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

Conclusions

Strings can produce many good things for cosmology:

- String-induced mechanism of baryogenesis (R.B., A-C. Davis and M. Hindmarsh, 1991).
- Explanation for the origin of primordial magnetic fields which are coherent on galactic scales (X.Zhang and R.B. (1999)).
- Seeds for high redshift supermassive black holes (S. Bramberger, R.B., P. Jreidini and J. Quintin, 2015; R.B., B. Cyr and H. Jiao, 2021).
- Origin of globular clusters (A. Barton, R.B. and L. Lin, 2015; R.B., L. Lin and S. Yamanouchi, 2015).
- Origin of fast radio bursts (R.B., B. Cyr and A. Iyer, 2017).
- - J. Mirocha and R.B. 2021)

Cosmic string scaling solution

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular

Conclusions

- At any time *t* there will be a network of "infinite" strings with curvature radius ~ *t*, ~ 1 per Hubble volume.
- At any time *t* there will be a distribution of string loops with radii *R*

$$n(R,t) = NR^{-5/2} t_{eq}^{1/2} t^{-2} \gamma G\mu t < R < \alpha t$$

• $R_c = \gamma G \mu t$: gravitational radiation cutoff. Loops with $R < R_c$ negligible.

Superconducting Strings

E. Witten, Nucl. Phys. B249, 557 (1985)

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Hole

Conclusion

- In many models, cosmic strings can carry currents → superconducting cosmic strings.
 - Bosonic and Fermionic superconductivity.
 - In Grand Unified Models cosmic string superconductivity is generic.
- In superconducting string models there is an additional parameter characterizing the string network, the **current** *I*.
- "Maximal" current I_c : for $I > I_c$ electromagnetic radiation dominates \rightarrow cutoff R_c on loop distribution changes..

Note: **Brandon Carter** pioneered a large body of work on superconducting cosmic strings, e.g. on **vorton** formation (B. Carter, Int. J. Theor. Phys. 36, 2451 (1997)).

Superconducting Strings

E. Witten, Nucl. Phys. B249, 557 (1985)

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Hole

Conclusions

- In many models, cosmic strings can carry currents \rightarrow superconducting cosmic strings.
- Bosonic and Fermionic superconductivity.
- In Grand Unified Models cosmic string superconductivity is generic.
- In superconducting string models there is an additional parameter characterizing the string network, the **current** *I*.
- "Maximal" current I_c : for $I > I_c$ electromagnetic radiation dominates \rightarrow cutoff R_c on loop distribution changes..

Note: Brandon Carter pioneered a large body of work on superconducting cosmic strings, e.g. on vorton formation (B. Carter, Int. J. Theor. Phys. 36, 2451 (1997)).

Plan

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular Observational Challenge

Cosmic String Review

3 Super-Massive High Redshift Black Holes from Superconducting Cosmic Strings

Globular Clusters from Cosmic Strings

Challenge

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- **Primordial black holes**: Hubble scale nonlinearities form a black hole because the Schwarzschild radius equals the radius of the overdensity.
- ACDM model of cosmology → nonlinearities form at late times and on scales much smaller than the Hubble radius. → Schwarzschild radius is parametrically smaller than the radius of the overdensity..
- Insufficient to have nonlinear fluctuations: Need to demonstrate that the mass collapses to inside the Schwazschild radius.
- In general, a collapsing gas cloud will fragment, form stars and never lead to a super-massive black hole (only stellar mass black holes).

Challenge

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- **Primordial black holes**: Hubble scale nonlinearities form a black hole because the Schwarzschild radius equals the radius of the overdensity.
- ACDM model of cosmology → nonlinearities form at late times and on scales much smaller than the Hubble radius. → Schwarzschild radius is parametrically smaller than the radius of the overdensity..
- Insufficient to have nonlinear fluctuations: Need to demonstrate that the mass collapses to inside the Schwazschild radius.
- In general, a collapsing gas cloud will fragment, form stars and never lead to a super-massive black hole (only stellar mass black holes).

Direct Collapse Black Hole Criteria

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular

Conclusions

To allow a gas cloud to collapse into a super-massive black hole the following criteria must be satisfied:

Sufficient mass condition: M_b > 10⁵M_☉ to form a super-massive black hole.

• Atomic cooling threshold condition: Collapse without fragmentation $\rightarrow T_{vir} > 10^4 K$.

 No heavy metal condition: presence of heavy metals woud allow cooling → fragmentation.

• No molecular hydrogen: would lead to cooling and fragmentation \rightarrow requires presence of a Lyman-Werner background of $J > J_c \sim 10^{-44} \text{GeV}^3$.

Realizing the Direct Collapse Black Hole Criteria I B. Cyr. H. Jiao and BB. arXiv:2202.01799. MNBAS in press

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular Sufficient mass condition at redshift $z < z_{rec}$:

$$M_b(z) = rac{\Omega_b(z)}{\Omega_M(z)} eta \mu R rac{1+z_{eq}}{1+z} > 10^5 M_{\odot}$$

$$ightarrow {m extsf{R}_{ extsf{c}}} < {m extsf{R}} < lpha {m t_{ extsf{eq}}}$$

There is a range of loop radii for which the condition is satisfied.

Atomic cooling condition:

Spherical collapse \rightarrow kinetic energy at collapse \rightarrow converted to virial temperature. Result: atomic cooling condition satisfied whenever the mass condition is met.

Realizing the Direct Collapse Black Hole Criteria I B. Cyr. H. Jiao and BB. arXiv:2202.01799. MNBAS in press

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes Globular Sufficient mass condition at redshift $z < z_{rec}$:

$$M_b(z) = rac{\Omega_b(z)}{\Omega_M(z)} eta \mu R rac{1+z_{eq}}{1+z} > 10^5 M_{\odot}$$

$$ightarrow {\it R_c} < {\it R} < lpha t_{\it eq}$$

There is a range of loop radii for which the condition is satisfied.

Atomic cooling condition:

Spherical collapse \rightarrow kinetic energy at collapse \rightarrow converted to virial temperature. Result: atomic cooling condition satisfied whenever the mass condition is met.

Realizing the Direct Collapse Black Hole Criteria II

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

Conclusions

Lyman-Werner condition

$$\frac{dP}{d\omega} = \kappa I^2 R^{1/3} \omega^{-2/3}$$

Assumption: radiation remains confinred in overdense region \rightarrow can compute the density of photons with 10 eV < E < 13 eV

 \rightarrow there is a range of currents $I < I_c$ for which the condition is satisfied.

Parameter Space Region

B. Cyr, H. Jiao and RB, arXiv:2202.01799, MNRAS, in press

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

Conclusions

There is a range of the cosmic string parameter space for which the direct collapse black hole criteria can be satisfied.

- For $G\mu \sim 10^{-10}$ the mean separation of loops forming SMBH will be $d_a \sim 10^{2/3} {
 m Mpc}$
- $\bullet \rightarrow$ reasonable number density of SMBH (M. Volonteri).

Intermediate Mass Black Holes from Cosmic String Loops? RB, B. Cyr, and H. Jiao, arXiv:2103.14057

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

Conclusions

- Consider *G*μ chosen to get the correct abundance of SMBH.
- $dn/dM \sim M^{-2}$ for $M_c < M < M_{SMBH} \rightarrow$ abundance of seeds which *might* lead to BH formation.

• $M_c \sim M_\odot$

• \rightarrow seeds in the *mass gap region* present in great abundance.

Plan

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Hol

Globular

Conclusions

Observational Challenge

Cosmic String Review

Super-Massive High Redshift Black Holes from Superconducting Cosmic Strings

4

Globular Clusters from Cosmic Strings

Idea

Cosmic	
Strings	

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- Globular cliusters: oldest and most dense star clusters, distributed in the halo.
- Cosmic string loops: oldest and most dense nonlinear regions, distributed in the halo of ACDM fluctuations.
- Question: Could string loops be the seeds of globular cliusters?

Idea

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Holes

Globular

- Globular cliusters: oldest and most dense star clusters, distributed in the halo.
- Cosmic string loops: oldest and most dense nonlinear regions, distributed in the halo of ACDM fluctuations.
- Question: Could string loops be the seeds of globular cliusters?

Abundance of globular cluster seeds due to cosmic strings

A. Barton, RB and L. Lin, arXiv:1502.07301

Effect of Cosmic String Velocities

L. Lin, S. Yamanouchi and RB , arXiv:1508.02784

Plan

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings Black Holes Globular Conclusions Observational Challenge

Cosmic String Review

Super-Massive High Redshift Black Holes from Superconducting Cosmic Strings

Globular Clusters from

Conclusions

Cosmic Strings

R. Brandenberger

Challenge

Cosmic Strings

Black Hole

Globular

- For $G\mu \sim 10^{-10}$ loops of superconducting cosmic strings can seed the observed abundance of high redshift super-massive black holes.
- Specifically: direct collapse black hole criteria can be satisfied in a range of cosmic string parameter space.
- String loops \rightarrow other interesting consequences for cosmology.