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My further black hole favorites
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Λ = 0: ”Black Holes have No Hair”
The analytic, nondegenerate,connected classification in space-time dimension four;
contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod, new
proof by Agostini-Mazzieri
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Static,
electro-vacuum,

regular black hole
=
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in the exterior region
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Piotr T. Chruściel Brandon’s black holes



Λ = 0: ”Black Holes have No Hair”
The analytic, nondegenerate,connected classification in space-time dimension four;
contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod, new
proof by Agostini-Mazzieri

Stationary,
electro-vacuum,

analytic,
non-degenerate,

connected,
regular black hole

=
Kerr-Newman

in the exterior region

Static,
electro-vacuum,

regular black hole
=

MP or RN

in the exterior region
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Half of the proof is contained in, or inspired by,
Brandon’s papers

How to transition from a geometric assumption

“regular black hole”

to a PDE problem

“uniqueness of solutions of a set of ODEs on a half-plane with
certain singular boundary conditions”

?

This requires understanding
1 the possible groups
2 the group actions
3 the properties of Killing horizons
4 the resulting boundary conditions
5 the topology
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Diagrams?

Carter diagrams, Penrose diagrams,
conformal diagrams ?
actually, carter not Carter; neither Penrose nor penrose
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Carter Diagrams ?

wrong Carter, Roger William
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Carter Diagrams
visualising causality for general two-dimensional metrics

1 Causal-relations are conformally invariant
2 Two-dimensional metrics are conformally flat (Lorentzian

case: introduce double-null coordinates)
3 In conformally flat coordinates causality coincides with the

Minkowskian one
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Piotr T. Chruściel Brandon’s black holes



Carter Diagrams
visualising causality for general two-dimensional metrics

1 Causal-relations are conformally invariant
2 Two-dimensional metrics are conformally flat (Lorentzian

case: introduce double-null coordinates)
3 In conformally flat coordinates causality coincides with the

Minkowskian one
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Conformal diagrams - Kerr

Kerr metric:

g = −∆− a2 sin2(θ)

Σ
dt2 − 2a sin2(θ)

(
r2 + a2 −∆

)
Σ

dtdφ

+
sin2(θ)

((
r2 + a2)2 − a2 sin2(θ)∆

)
Σ

dφ2 +
Σ

∆
dr2 +Σdθ2 ,

where

Σ = r2 + a2 cos2 θ ,

∆ = r2 + a2 − 2mr = (r − r+)(r − r−) ,

r± = m ±
√

m2 − a2 .
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Piotr T. Chruściel Brandon’s black holes



Conformal diagrams - Kerr

2-dimensional metric for construction of conformal diagrams:
1 introduce Eddington-Finkelstein coordinates,

dv = dt +
(a2 + r2)

∆
dr , dφ̃ = dφ+

a
∆

dr ,

2 set θ = const , φ̃ = const ′,

then

g2 = −F (r)
Σ

dv2 + 2dvdr ,

where

F (r) := r2 + a2 cos2(θ)− 2mr = (r − rθ,+)(r − rθ,−) ,

rθ,± = m ±
√

m2 − a2 cos2(θ) .
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Conformal diagrams - Kerr, with θ = 0
B. Carter, Phys. Rev. 141, 1242 (1966)

g2 = −F (r)
Σ

dv2 + 2dvdr ,

with

F (r) = r2 + a2 cos2(θ)− 2mr .

For θ = 0 ,

rθ,± = r± = m ±
√

m2 − a2 ,

assume m2 > a2.
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Conformal diagrams - Kerr, with θ = 0
B. Carter, Black hole equilibrium states Part I: Analytic and geometric properties of the
Kerr solutions. les Houches 1973

Always read the fine print !

g2 = −F (r)
Σ

dv2 + 2dvdr ,

with

F (r) = r2 + a2 cos2(θ)− 2mr .

For θ = 0 ,

rθ,± = r± = m ±
√

m2 − a2 ,

assume m2 > a2.
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Conformal diagrams - Kerr, with θ = π/2

g2 = −F (r)
Σ

dv2 + 2dvdr ,

with

F (r) = r2 + a2 cos2(θ)− 2mr .

For θ = π/2 ,

rθ,± = m ± m ,

for all m ∈ R.
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Projection diagrams - Kerr
PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]
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Projection diagrams - definition
PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

(M ,g)... smooth space-time,
R1,n... (n + 1)-dimensional Minkowski space-time.

A projection diagram is a pair (π,U ), where

π : M → W

is a continuous map, differentiable on an open dense set, from
M onto π(M ) =: W ⊂ R1,1; and

U ⊂ M

is a non-empty open set, on which π is a smooth submersion,
so that:

1 every smooth timelike curve σ ⊂ π(U ) is the projection of
a smooth timelike curve γ in (U ,g): σ = π ◦ γ;

2 the image π ◦ γ of every smooth timelike curve γ ⊂ U is a
timelike curve in R1,1.
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Projection diagrams - Kerr;

Carter, Phys Rev 1978

PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

For r ̸∈ [r̂−,0],

gproj = − ∆(r2 + a2)

r (a2(2m + r) + r3)
dt2

+
(r2 + a2)

∆
dr2 ,

∆ = r2 + a2 − 2mr
= (r − r+)(r − r−) ,

and assume here m2 > a2.

Carter’s time machine
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Projection diagrams - Kerr; Carter, Phys Rev 1978
PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]
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Rotating black holes with a cosmological constant
Carter-Demiański metrics (B. Carter, Comm. Math. Phys. 10 (1968), 280; M.
Demiański, Acta Astronomica 23 (1973))

Kerr-(A)dS (Carter-Demiański) metric:

g = −∆− a2 sin2(θ)

Σ
dt2 − 2a sin2(θ)

(
r2 + a2 −∆

)
Σ

dtdφ

+
sin2(θ)

((
r2 + a2)2 − a2 sin2(θ)∆

)
Σ

dφ2 +
Σ

∆
dr2 +Σdθ2 ,

where

Σ = r2 + a2 cos2 θ ,

∆ =
(

1 − 1
3Λr2

)
(r2 + a2)− 2mr .
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Projection diagrams - Kerr-Newman-de Sitter
four simple zeros of

∆r =
(

1 − 1
3Λr2

)
(r2 + a2)− 2mr + q2
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Projection diagrams - Kerr-Newman-de Sitter
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Figure: two zeros (top), or three zeros, with r1 < 0 < r2 = r3 < r4
(bottom left) and r1 < 0 < r2 < r3 = r4 (bottom right)
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Projection diagrams - Kerr-Newman-anti-de Sitter

∆r =
(

1 − 1
3Λr2

)
(r2 + a2)− 2mr + q2

Figure: Two distinct zeros of ∆r =(
1 − 1

3Λr2) (r2 + a2)− 2mr + q2

(left diagram) and one double zero
(right diagram).
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The structure of the ring
B. Carter, les Houches 1973
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The structure of the ring
PTC, M. Maliborski, N. Yunes, Phys.Rev.D 101 (2020) 10, 104048, e-Print: 1912.06020
[gr-qc]

Figure: The causality-violating region at {t = 0} in Kerr-Schild
coordinates, in the negative-r̃ region (a/m = .5 corresponds to green,
1 to blue, and 2 to orange/yellow). The Killing vector ∂φ is timelike in
the region bounded by the curve and null on the boundary. The ring is
located on the dotted line.

Piotr T. Chruściel Brandon’s black holes



The ring and its disc
B. Carter, Les Houches 1973; figure from Griffiths & Podolsky
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Reinterpretation: the minimal period of the angle
around the ring is 4π
PTC, M. Maliborski, N. Yunes, Phys.Rev.D 101 (2020) 10, 104048, e-Print: 1912.06020
[gr-qc]

The ring intersects the plane spanned by the loop transversally
at the dot.
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Peeking through the disc
M. Maliborski, T. Sutter, PTC, https://www.quantagon.at/masters-thesis
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Joyeux Anniversaire, même si un peu tardif ...

It is a pleasure to be able to wish you a

Happy
Birthday

Piotr T. Chruściel Brandon’s black holes



Joyeux Anniversaire, même si un peu tardif ...

It is a pleasure to be able to wish you a

Happy
Birthday
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