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A = 0: "Black Holes have No Hair”

The analytic, nondegenerate,connected classification in space-time dimension four;

contributions by Israel, Hawking, , Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,
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Half of the proof is contained in, or inspired by,
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Half of the proof is contained in, or inspired by,

Brandon’s papers

How to transition from a geometric assumption
“regular black hole”
to a PDE problem

“uniqueness of solutions of a set of ODEs on a half-plane with

certain singular boundary conditions”
?
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Half of the proof is contained in, or inspired by,

Brandon’s papers

How to transition from a geometric assumption
“regular black hole”
to a PDE problem

“uniqueness of solutions of a set of ODEs on a half-plane with
certain singular boundary conditions”

?
This requires understanding
@ the possible groups
© the group actions
© the properties of Killing horizons
© the resulting boundary conditions
Q@ the topology
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Carter diagrams, Penrose diagrams,
conformal diagrams ?

actually, carter not Carter; neither Penrose nor penrose

€101-89S With Poppet
€102-1365 w/o Poppet
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Carter Diagrams ?
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Carter Diagrams ?

RAFAEL STEKOLSHCHIK
@ b
A,
3 ACUENS 2
R A
. a a,
5 5 (Y (g
oMy )% o >
B B
B Eglap) Eglay)
o @ a a 5
N N RN R Y N T
X ey K 5 oL h X epi X Pes
(8 () b B L]
£ By(a) Eyay) Eyap) Eyag)
ay & o o
Iy BiJoy b B B Bl
PR AN S\ E ENCC)
3 3 b t
By Eglap Eglap Eglap
ay oy a & Y
[T Y Y TN e
s o ayE, o s By e 3y
fa B 2 fa (]
Eglay) Eglag) Eglag) Egfey) Eglag)




Carter Diagrams ?

wrong Carter, Roger William
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FIGURE 3.4. Carter diagrams of D and E types
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Carter Diagrams

visualising causality for general metrics
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Carter Diagrams

visualising causality for general metrics

@ Causal-relations are conformally invariant

© Two-dimensional metrics are conformally flat (Lorentzian
case: introduce double-null coordinates)

© In conformally flat coordinates causality coincides with the
Minkowskian one
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Conformal diagrams - Kerr
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Conformal diagrams - Kerr

— &sin? 2asin?(0) (r2 + & — A
. A —&sin (G)dtz_ sin®(0) (r* + )dtdgo
> >
.2 2 2 _ 2.2
sin?(0) ( (r? + &) — &sin?(9)A
+ (( ) )dap2+zdr2+2d92
> A
where
Y = r’4+ & cos?h,
A = rPra@-2mr=(r—r)r—r),
r- = mtvm?—a.
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Conformal diagrams - Kerr

2-dimensional metric for construction of conformal diagrams:

@ introduce Eddington-Finkelstein coordinates,

(& +r%)

dv = dt+ A

ar | ng:dgoJrgdr,

Q set 0 = const, $p = const’,

then
9 = —Fg)dv2 + 2dvdr ,
where
F(r) == rP+acos®(8) —2mr=(r—ry )(r—ry_),
fhr = M= \/m2 — a?cos?(0) .
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Conformal diagrams - Kerr, with § = 0

B. Carter, Phys. Rev. 141, 1242 (1966)

= — F(r)dv + 2dvdr ,

with

F(r) = r? + & cos?() — 2mr .

For =0,

e =r=mxvm?—a,

assume m? > &.
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Conformal diagrams - Kerr, with § = 0

B. Carter, Black hole equilibrium states Part |: Analytic and geometric properties of the
Kerr solutions. les Houches 1973

o = F(r) —Zadv? + 2dvar ,

with

F(r) = r? + & cos?() — 2mr .

Forf =0,

fpr=re=mxvVm?—a2,

e > 2
aSSu me m > . Figure 6.1. Conformal n of symmetry axi 0 of maximally extended Kerr

or Kerr-Newman solution when M? > a® + P? + Q. In all the diagrams of this
section the locus # = 0, where the axis passes through (without intersecting) the
line.

ring singularity, is marked by a broken zig:
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Conformal diagrams - Kerr, with § = /2

e )dv + 2dvar

with

F(r) = r? + & cos?(#) — 2mr .

Foro =n/2,

I’gd::m:i:m,

for all m € R.
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Projection diagrams - Kerr
PTC, C. Olz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]
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Projection diagrams - definition

PTC, C. Olz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

(A ,Q)... smooth space-time,
R'"... (n+ 1)-dimensional Minkowski space-time.

A projection diagram is a pair (w, % ), where
MW

is a continuous map, differentiable on an open dense set, from
M onto () = c R"; and

v C M

is a non-empty open set, on which 7 is a smooth submersion,
so that:
@ every smooth timelike curve o C 7(% ) is the projection of
a smooth timelike curve v in (%,g): 0 = mwo~;
© the image 7 o v of every smooth timelike curve v C % is a
timelike curve in R"1.
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Projection diagrams - Kerr;

PTC, C. Olz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

For r ¢ [F_,0],

A(r? + &) 5 : A
9ol = r@mr )
2+ 2) s
+Tdr , N, .
A = Pia-2mr v
= (r-r)r-r),

and assume here m? > a°.
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Projection diagrams - Kerr;

PTC, C. Olz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

For r ¢ [F_,0],

A(r? + &) o2

Gproj Cr(a2(2m+r) +rd)
2
+7(r Zaz)drz,
A = rP+a@-—2mr

= (r=r)(r—r),

and assume here m? > a°.

Carter’s time machine
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Rotating black holes with a cosmological constant

Carter-Demianski metrics (B. Carter, Comm. Math. Phys. 10 (1968), 280; M.
Demianski, Acta Astronomica 23 (1973))

Piotr T. Chrusciel Brandon’s black holes



Rotating black holes with a cosmological constant

Carter-Demianski metrics (B. Carter, Comm. Math. Phys. 10 (1968), 280; M.
Demianski, Acta Astronomica 23 (1973))

Kerr-(A)dS (Carter-Demianski) metric:

— &sin? 2asin?(9) (rP+ & — A
g = A asm(@)dtQ_ sin®(0) (r* + )dtdgo
> >
sin?(6) ( (r® + a2)2 — & sin?(0)A 5
+ ( ) dyp? + = dr? + £do?
> A
where
Y = r’4+ &% cos?h,
A = (1 = %/\r2> (r® + &) — 2mr .
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Projection diagrams - Kerr-Newman-de Sitter

four simple zeros of

A, = ( - %Ar2> (r2 + &) — 2mr + ¢?




Projection diagrams - Kerr-Newman-de Sitter

Figure: two zeros (top), or three zeros, withri <0< n=r<n
(bottom left) and 1 < 0 < r» < r3 = r4 (bottom right)

rusciel Brandon’s black holes



Projection diagrams - Kerr-Newman-anti-de Sitter

A= (1-302) (P+d)—2mr+q /A

Figure: Two distinct zeros of A, =
(1 = IAr2) (r2 + &) — 2mr + ¢?
(left diagram) and one double zero
(right diagram).
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The structure of the ring

B. Carter, les Houches 197

Republication of: Black hole equilibrium states. Part I 2927

Figure 7.1. Plan of a polar 2-section on which v and @ are constant. through max-
imally extended Kerr solution with M? > a2. The ring singularity is treated as a
branch point and only half of the 2-section (corresponding roughly to cos 6 > 0)
bounded by cuts is shown — the other half should be regarded as being superimposed
on the first half in the planc of the paper. The same comments apply to Figures 7.2
and 7.3. In all the diagrams of this section dotted lines are used Lo represent locuses
on which 1 or 6 is constant, and the positions of the Killing horizons are marked by
a heavy line except for degenerate horizons which are marked by a double line. The
regions in which V" is negative are indicated by single shading and the regions where
X s negative are marked by double shading. Some projected null cones are marked.

black holes




The structure of the ring

PTC, M. Maliborski, N. Yunes, Phys.Rev.D 101 (2020) 10, 104048, e-Print: 1912.06020
[g9r-ac]

z/a

y/a
z/a

Figure: The causality-violating region at {t = 0} in Kerr-Schild

coordinates, in the negative-F region (a/m = .5 corresponds to green,

1 to blue, and 2 to orange/yellow). The Killing vector d,, is timelike in

the region bounded by the curve and null on the boundary. The ring is

located on the dotted line.
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The ring and its disc

B. Carter, Les Houches 1973; figure from Griffiths & Podolsky

m>0 | \ / m <0
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Reinterpretation: the minimal period of the angle

around the ring is 4n
PTC, M. Maliborski, N. Yunes, Phys.Rev.D 101 (2020) 10, 104048, e-Print: 1912.06020

[9r-qc]

The ring intersects the plane spanned by the loop transversally
at the dot.
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Peeking through the disc

M. Maliborski, T. Sutter, PTC, https://www.quantagon.at/masters—thesis
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Joyeux Anniversaire, méme si un peu tardif ...

It is a pleasure to be able to wish you a

Piotr T. Chrusciel Brandon’s black holes



Joyeux Anniversaire, méme si un peu tardif ...

It is a pleasure to be able to wish you a

Happy
Birthday

Biriﬁdags

are gUOC[ for' gou.
Statistics show that
peup[e who have the

most fioe the [onge:i!

o e

Simple Math

P
il
2
il .
S p
5 /
2 y
4
2
MY AGE

Piotr T. Chrusciel Brandon’s black holes



