Brandon and black holes

Piotr T. Chruściel

University of Vienna

Paris, Carterfest, July 2022

Brandon's four most cited papers on Inspire

```
The Four laws of black hole mechanics
James M. Bardeen (Yale U.), B. Carter (Cambridge U.), S.W. Hawking (Cambridge U.) (1973)
Published in: Commun.Math.Phys. }31\mathrm{ (1973) 161-170
C) DOI G cite #% claim
Global structure of the Kerr family of gravitational fields
Brandon Carter (Cambridge U., DAMTP) (Mar, 1968)
Published in: Phys.Rev. }174\mathrm{ (1968) 1559-1571
C) DOI \Xi cite EO claim
```

```
Axisymmetric Black Hole Has Only Two Degrees of Freedom
B. Carter (Cambridge U., Inst. of Astron.) (Feb, 1971)
Published in: Phys.Rev.Lett. 26 (1971) 331-333
( \() \mathrm{DOI}\)
```

```cite
```

```claim
```935 citations
```

Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations
B. Carter (Cambridge U. (main)) (Dec 1, 1968)
Published in: Commun.Math.Phys. 10 (1968) 4, 280-310

```
cite \(\square\) claim
```731 citations

\section*{My further black hole favorites}

MR0334798 (48 \#13116) Bardeen, J. M.; Carter, B.; Hawking, S. W. The four laws of black hole mechanics. Comm. Math. Phys. 31 (1973), 161-170. (Reviewer: W. B. Bonnor) 83.35

111
MR0239841 (39 \#1198) Carter, Brandon Hamilton-Jacobi and Schrödinger separable solutions of Einstein'sequations Comm Math. Phys. 10 (1968), 280-310. (Reviewer: W. Israel) 83.53

MR0465047 (57 \#4960) Carter, Brandon Black hole equilibrium states. Black holes/Les astres occlus (École
101 d'Été Phys. Théor., Les Houches, 1972), pp. 57-214. Gordon and Breach, New York, 1973. (Reviewer: Andrew King) 83.53

Killing horizons and orthogonally transitive groups in space-time

Published in: J.Math.Phys. 10 (1969) 70-81
(1) DOIcite
Fo claim

156 citations

The commutation property of a stationary, axisymmetric system
Brandon Carter (Cambridge U., DAMTP) (1970)
Published in: Commun.Math.Phys. 17 (1970) 233-238
DOI
ヨ cite
"
claim

\section*{\(\Lambda\) = 0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald,

\section*{Stationary,}

\section*{\(\Lambda\) = 0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald,

> Stationary, electro-vacuum,

\section*{\(\Lambda\) = 0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald,

> Stationary, electro-vacuum, analytic,

\section*{\(\Lambda\) = 0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald,

> Stationary, electro-vacuum, analytic, non-degenerate,

\section*{regular black hole}

Kerr-Newman

\section*{\(\Lambda\) = 0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald,

> Stationary, electro-vacuum, analytic, non-degenerate, connected,

\section*{Kerr-Newman}

\section*{\(\Lambda\) = 0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald,


Stationary, electro-vacuum, analytic, non-degenerate, connected, regular black hole
=

\section*{Kerr-Newman}
in the exterior region

\section*{\(\Lambda\) =0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald, Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod


Stationary, electro-vacuum, analytic, non-degenerate, connected, regular black hole =

\section*{Kerr-Newman} in the exterior region

\section*{Static,}
electro-vacuum,
regular black hole
\[
=
\]

MP or RN
in the exterior region

\section*{\(\Lambda\) =0: "Black Holes have No Hair"}

The analytic, nondegenerate,connected classification in space-time dimension four; contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes, PTC-Sudarsky-Wald, Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod, new


Stationary, electro-vacuum, analytic, non-degenerate, connected, regular black hole =

\section*{Kerr-Newman} in the exterior region

\section*{Static,}
electro-vacuum,
regular black hole
\[
=
\]

MP or RN
in the exterior region

\title{
Half of the proof is contained in, or inspired by, Brandon's papers
}

\title{
Half of the proof is contained in, or inspired by, Brandon's papers
}

How to transition from a geometric assumption

\section*{"regular black hole"}
to a PDE problem
"uniqueness of solutions of a set of ODEs on a half-plane with certain singular boundary conditions" ?

\title{
Half of the proof is contained in, or inspired by, Brandon's papers
}

How to transition from a geometric assumption

\section*{"regular black hole"}
to a PDE problem
"uniqueness of solutions of a set of ODEs on a half-plane with certain singular boundary conditions"
?
This requires understanding
(1) the possible groups
the group actions
the properties of Killing horizons

\section*{Half of the proof is contained in, or inspired by, Brandon's papers}

How to transition from a geometric assumption

\section*{"regular black hole"}
to a PDE problem
"uniqueness of solutions of a set of ODEs on a half-plane with certain singular boundary conditions"
?
This requires understanding
(1) the possible groups
(2) the group actions
the properties of Killing horizons
(4) the resulting boundary conditions

\section*{Half of the proof is contained in, or inspired by, Brandon's papers}

How to transition from a geometric assumption

\section*{"regular black hole"}
to a PDE problem
"uniqueness of solutions of a set of ODEs on a half-plane with certain singular boundary conditions"
?
This requires understanding
(1) the possible groups
(2) the group actions
(3) the properties of Killing horizons


\section*{Half of the proof is contained in, or inspired by, Brandon's papers}

How to transition from a geometric assumption

\section*{"regular black hole"}
to a PDE problem
"uniqueness of solutions of a set of ODEs on a half-plane with certain singular boundary conditions"
?
This requires understanding
(1) the possible groups
(2) the group actions
(3) the properties of Killing horizons
(4) the resulting boundary conditions

\section*{Half of the proof is contained in, or inspired by, Brandon's papers}

How to transition from a geometric assumption

\section*{"regular black hole"}
to a PDE problem
"uniqueness of solutions of a set of ODEs on a half-plane with certain singular boundary conditions"
?
This requires understanding
(1) the possible groups
(2) the group actions
(3) the properties of Killing horizons
(4) the resulting boundary conditions
(5) the topology

\title{
Carter diagrams, Penrose diagrams, conformal diagrams ?
}

Carter diagrams, Penrose diagrams, conformal diagrams ?


Carter diagrams, Penrose diagrams, conformal diagrams ?

\section*{actually, carter not Carter;}


Carter diagrams, Penrose diagrams, conformal diagrams ?
actually, carter not Carter; neither Penrose nor penrose


\section*{Carter Diagrams?}

\section*{Carter Diagrams?}

10
RAFAEL STEKOLSHCHIK


Figure 3.4. Carter diagrams of \(D\) and \(E\) types

\title{
Carter Diagrams?
}

\author{
wrong Carter, Roger William
}

10
RAFAEL STEKOLSHCHIK


Figure 3.4. Carter diagrams of \(D\) and \(E\) types

\section*{Carter Diagrams}
visualising causality for general two-dimensional metrics

\section*{(1) Causal-relations are conformally invariant Tinın-dimencinnal motricc are ennformally flat (Lorentzian case: introduce double-null coordinates)}

\section*{Carter Diagrams}
visualising causality for general two-dimensional metrics
(1) Causal-relations are conformally invariant


\section*{Carter Diagrams}

\section*{visualising causality for general two-dimensional metrics}
(1) Causal-relations are conformally invariant
(2) Two-dimensional metrics are conformally flat (Lorentzian case: introduce double-null coordinates)

\section*{Carter Diagrams}
(1) Causal-relations are conformally invariant
(2) Two-dimensional metrics are conformally flat (Lorentzian case: introduce double-null coordinates)
(3) In conformally flat coordinates causality coincides with the Minkowskian one

\section*{Conformal diagrams - Kerr}

\section*{Conformal diagrams - Kerr}

\section*{Kerr metric:}
\[
\begin{aligned}
g= & -\frac{\Delta-a^{2} \sin ^{2}(\theta)}{\Sigma} d t^{2}-\frac{2 a \sin ^{2}(\theta)\left(r^{2}+a^{2}-\Delta\right)}{\Sigma} d t d \varphi \\
& +\frac{\sin ^{2}(\theta)\left(\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2}(\theta) \Delta\right)}{\Sigma} d \varphi^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2}
\end{aligned}
\]
where
\[
\begin{aligned}
\Sigma & =r^{2}+a^{2} \cos ^{2} \theta \\
\Delta & =r^{2}+a^{2}-2 m r=\left(r-r_{+}\right)\left(r-r_{-}\right) \\
r_{ \pm} & =m \pm \sqrt{m^{2}-a^{2}}
\end{aligned}
\]

\section*{Conformal diagrams - Kerr}

2-dimensional metric for construction of conformal diagrams:
(1) introduce Eddington-Finkelstein coordinates,
\[
d v=d t+\frac{\left(a^{2}+r^{2}\right)}{\Delta} d r, \quad d \tilde{\varphi}=d \varphi+\frac{a}{\Delta} d r,
\]
(2) set \(\theta=\) const, \(\tilde{\varphi}=\) const \(^{\prime}\),
then
\[
g_{2}=-\frac{F(r)}{\Sigma} d v^{2}+2 d v d r
\]
where
\[
\begin{aligned}
F(r) & :=r^{2}+a^{2} \cos ^{2}(\theta)-2 m r=\left(r-r_{\theta,+}\right)\left(r-r_{\theta,-}\right), \\
r_{\theta, \pm} & =m \pm \sqrt{m^{2}-a^{2} \cos ^{2}(\theta)} .
\end{aligned}
\]

\section*{Conformal diagrams - Kerr, with \(\theta=0\)}
B. Carter, Phys. Rev. 141, 1242 (1966)
\[
g_{2}=-\frac{F(r)}{\Sigma} d v^{2}+2 d v d r
\]
with
\[
F(r)=r^{2}+a^{2} \cos ^{2}(\theta)-2 m r
\]

For \(\theta=0\),
\[
r_{\theta, \pm}=r_{ \pm}=m \pm \sqrt{m^{2}-a^{2}}
\]
assume \(m^{2}>a^{2}\).


\section*{Conformal diagrams - Kerr, with \(\theta=0\)}
B. Carter, Black hole equilibrium states Part I: Analytic and geometric properties of the Kerr solutions. les Houches 1973
\[
g_{2}=-\frac{F(r)}{\Sigma} d v^{2}+2 d v d r
\]
with
\[
F(r)=r^{2}+a^{2} \cos ^{2}(\theta)-2 m r .
\]

For \(\theta=0\),
\[
r_{\theta, \pm}=r_{ \pm}=m \pm \sqrt{m^{2}-a^{2}}
\]
assume \(m^{2}>a^{2}\).


Figure 6.1. Conformal diagram of symmetry axis \(\theta=0\) of maximally extended Kerr or Kerr-Newman solution when \(M^{2}>a^{2}+P^{2}+Q^{2}\). In all the diagrams of this section the locus \(\theta=0\), where the axis passes through (without intersecting) the ring singularity, is marked by a broken zig-zag line.

\section*{Conformal diagrams - Kerr, with \(\theta=0\)}
B. Carter, Black hole equilibrium states Part I: Analytic and geometric properties of the Kerr solutions. les Houches 1973 Always read the fine print.
\[
g_{2}=-\frac{F(r)}{\Sigma} d v^{2}+2 d v d r
\]
with
\[
F(r)=r^{2}+a^{2} \cos ^{2}(\theta)-2 m r .
\]

For \(\theta=0\),
\[
r_{\theta, \pm}=r_{ \pm}=m \pm \sqrt{m^{2}-a^{2}}
\]
assume \(m^{2}>a^{2}\).


Figure 6.1. Conformal diagram of symmetry axis \(\theta=0\) of maximally extended Kerr or Kerr-Newman solution when \(M^{2}>a^{2}+P^{2}+Q^{2}\). In all the diagrams of this section the locus \(\theta=0\), where the axis passes through (without intersecting) the ring singularity, is marked by a broken zig-zag line.

\section*{Conformal diagrams - Kerr, with \(\theta=\pi / 2\)}
\[
g_{2}=-\frac{F(r)}{\Sigma} d v^{2}+2 d v d r
\]
with
\[
F(r)=r^{2}+a^{2} \cos ^{2}(\theta)-2 m r .
\]


For \(\theta=\pi / 2\),
\[
r_{\theta, \pm}=m \pm m,
\]

for all \(m \in \mathbb{R}\).

Projection diagrams - Kerr

\section*{PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]}


\title{
Projection diagrams - definition \\ PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]
}
\((\mathscr{M}, g) \ldots\) smooth space-time,
\(\mathbb{R}^{1, n} \ldots(n+1)\)-dimensional Minkowski space-time.
A projection diagram is a pair \((\pi, \mathscr{U})\), where
\[
\pi: \mathscr{M} \rightarrow \mathscr{W}
\]
is a continuous map, differentiable on an open dense set, from \(\mathscr{M}\) onto \(\pi(\mathscr{M})=: \mathscr{W} \subset \mathbb{R}^{1,1}\); and
\[
\mathscr{U} \subset \mathscr{M}
\]
is a non-empty open set, on which \(\pi\) is a smooth submersion, so that:
(1) every smooth timelike curve \(\sigma \subset \pi(\mathscr{U})\) is the projection of a smooth timelike curve \(\gamma\) in \((\mathscr{U}, g): \sigma=\pi \circ \gamma\);
(2) the image \(\pi \circ \gamma\) of every smooth timelike curve \(\gamma \subset \mathscr{U}\) is a timelike curve in \(\mathbb{R}^{1,1}\).

\section*{Projection diagrams - Kerr;} PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

For \(r \notin\left[\hat{r}_{-}, 0\right]\),
\[
\begin{aligned}
g_{\text {proj }}= & -\frac{\Delta\left(r^{2}+a^{2}\right)}{r\left(a^{2}(2 m+r)+r^{3}\right)} d t^{2} \\
& +\frac{\left(r^{2}+a^{2}\right)}{\Delta} d r^{2}, \\
\Delta= & r^{2}+a^{2}-2 m r \\
= & \left(r-r_{+}\right)\left(r-r_{-}\right),
\end{aligned}
\]
and assume here \(m^{2}>a^{2}\).


\section*{Projection diagrams - Kerr; Carter, Phys Rev 1978} PTC, C. Ölz, S. Szybka, Phys.Rev.D 86 (2012) 124041, e-Print: 1211.1718 [gr-qc]

For \(r \notin\left[\hat{r}_{-}, 0\right]\),
\[
\begin{aligned}
g_{\text {proj }}= & -\frac{\Delta\left(r^{2}+a^{2}\right)}{r\left(a^{2}(2 m+r)+r^{3}\right)} d t^{2} \\
& +\frac{\left(r^{2}+a^{2}\right)}{\Delta} d r^{2}, \\
\Delta= & r^{2}+a^{2}-2 m r \\
= & \left(r-r_{+}\right)\left(r-r_{-}\right),
\end{aligned}
\]
and assume here \(m^{2}>a^{2}\).

\section*{Carter's time machine}


\section*{Rotating black holes with a cosmological constant}

Carter-Demiański metrics (B. Carter, Comm. Math. Phys. 10 (1968), 280; M. Demiański, Acta Astronomica 23 (1973))

\section*{Rotating black holes with a cosmological constant}

Carter-Demiański metrics (B. Carter, Comm. Math. Phys. 10 (1968), 280; M. Demiański, Acta Astronomica 23 (1973))

Kerr-(A)dS (Carter-Demiański) metric:
\[
\begin{aligned}
g= & -\frac{\Delta-a^{2} \sin ^{2}(\theta)}{\Sigma} d t^{2}-\frac{2 a \sin ^{2}(\theta)\left(r^{2}+a^{2}-\Delta\right)}{\Sigma} d t d \varphi \\
& +\frac{\sin ^{2}(\theta)\left(\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2}(\theta) \Delta\right)}{\Sigma} d \varphi^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2}
\end{aligned}
\]
where
\[
\begin{aligned}
& \Sigma=r^{2}+a^{2} \cos ^{2} \theta \\
& \Delta=\left(1-\frac{1}{3} \wedge r^{2}\right)\left(r^{2}+a^{2}\right)-2 m r
\end{aligned}
\]

\section*{Projection diagrams - Kerr-Newman-de Sitter}
four simple zeros of
\[
\Delta_{r}=\left(1-\frac{1}{3} \wedge r^{2}\right)\left(r^{2}+a^{2}\right)-2 m r+q^{2}
\]


Piotr T. Chruściel
Brandon's black holes

\section*{Projection diagrams - Kerr-Newman-de Sitter}


Figure: two zeros (top), or three zeros, with \(r_{1}<0<r_{2}=r_{3}<r_{4}\) (bottom left) and \(r_{1}<0<r_{2}<r_{3}=r_{4}\) (bottom right)

\section*{Projection diagrams - Kerr-Newman-anti-de Sitter}
\(\Delta_{r}=\left(1-\frac{1}{3} \Lambda r^{2}\right)\left(r^{2}+a^{2}\right)-2 m r+q^{2}\)
Figure: Two distinct zeros of \(\Delta_{r}=\) \(\left(1-\frac{1}{3} \Lambda r^{2}\right)\left(r^{2}+a^{2}\right)-2 m r+q^{2}\) (left diagram) and one double zero (right diagram).


\section*{The structure of the ring}

\section*{B. Carter, les Houches 1973}


Figure 7.1. Plan of a polar 2-section on which \(v\) and \(\bar{\varphi}\) are constant through maximally extended Kerr solution with \(M^{2}>a^{2}\). The ring singularity is treated as a branch point and only half of the 2 -section (corresponding roughly to \(\cos \theta>0\) ) bounded by cuts is shown - the other half should be regarded as being superimposed on the first half in the plane of the paper. The same comments apply to Figures 7.2 and 7.3. In all the diagrams of this section dotted lines are used to represent locuses on which \(r\) or \(\theta\) is constant, and the positions of the Killing horizons are marked by a heavy line except for degenerate horizons which are marked by a double line. The regions in which \(V\) is negative are indicated by single shading and the regions where \(X\) is negative are marked by double shading. Some projected null cones are marked.

\section*{The structure of the ring}

PTC, M. Maliborski, N. Yunes, Phys.Rev.D 101 (2020) 10, 104048, e-Print: 1912.06020 [gr-qc]


Figure: The causality-violating region at \(\{t=0\}\) in Kerr-Schild coordinates, in the negative- \(\tilde{r}\) region \((a / m=.5\) corresponds to green, 1 to blue, and 2 to orange/yellow). The Killing vector \(\partial_{\varphi}\) is timelike in the region bounded by the curve and null on the boundary. The ring is located on the dotted line.

\section*{The ring and its disc}
B. Carter, Les Houches 1973; figure from Griffiths \& Podolsky


\title{
Reinterpretation: the minimal period of the angle around the ring is \(4 \pi\) \\ PTC, M. Maliborski, N. Yunes, Phys.Rev.D 101 (2020) 10, 104048, e-Print: 1912.06020 [gr-qc]
}


The ring intersects the plane spanned by the loop transversally at the dot.

\section*{Peeking through the disc}
M. Maliborski, T. Sutter, PTC, https: //www. quantagon.at/masters-thesis


\section*{Joyeux Anniversaire, même si un peu tardif ...}

It is a pleasure to be able to wish you a

\section*{Joyeux Anniversaire, même si un peu tardif ...}

It is a pleasure to be able to wish you a

\section*{Happy Birthday}

Birthdays are good for you. Statistics show that people who have the most live the longest!
(1amlenmen

```

