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Influence of Brandon Carter

Discussions and insightful remarks, explanations, critical comments,
encouragement,

self gravity of topological defects domain walls and strings and the limited role
distributions can play

Braneworld cosmology and the relation to Birkhoff’s theorem

codimension 2 cosmology in Lovelock theory

N
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Black holes in scalar tensor theories

Simplest geometric modified gravity theory with one additional degree of freedom

BD theory,..., Horndeski,..., beyond Horndeski,..., DHOST theories [Noui, Langlois, Vernizzi,

Crisostomi, Koyama et al]

@ ST are limits of more complex fundamental theories (massive gravity, braneworld models,
EFT from string theory, Lovelock theory etc.)

@ Horndeski theory is parametrlzed by 4 functions of scalar and its kinetic energy,
G = Gi(¢, X), X = —fg‘“’a fotoNne]

o in an internal map in DHOST :
guv — Buv = guv + VoV,

|
DHOST | : DHOST
............. | C(X,9),D(X,0)
Beyond Horndeskil

D(X) / #)D(X,9) |

Type | Type ll
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Solutions of spherical symmetry in Horndeski theories

@ Example Horndeski theory [abichev, cc]

s= [ d*xy/—¢ [R—2ns — X + 86+ 0,00,9] ,
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Solutions of spherical symmetry in Horndeski theories

@ Example Horndeski theory [abichev, cc]
S= | d*x\/—¢ [R —2M, — X + BGHV 9, @01,@] ,
® X = _%gu’/au‘ﬁauiﬁ

@ One can find the general spherically symmetric and static solutions,

ds? = —h(r)de? + €5 + 2dQ?, with ¢ = o(t, 1),
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Solutions of spherical symmetry in Horndeski theories

@ Example Horndeski theory [abichev, cc]

s= [ d*xy/—¢ [R—2ns — X + 86+ 0,00,9] ,

® X = _%gu’/au‘ﬁauiﬁ

@ One can find the general spherically symmetric and static solutions,
ds? = —h(r)de? + €5 + 2dQ?, with ¢ = o(t, 1),

@ simple (stealth) solution reads

2
f=h=1— & + ﬂ,z
r 358
q
=qt+ dr —4/1—h
¢=q A%
with secondary hair qz = WZAT?B relating the couplings.
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Solutions of spherical symmetry in Horndeski theories

@ Example Horndeski theory [abichev, cc]

s= [ d*xy/—¢ [R—2ns — X + 86+ 0,00,9] ,

® X = _%gu’/au‘ﬁauiﬁ

@ One can find the general spherically symmetric and static solutions,
ds? = —h(r)de? + €5 + 2dQ?, with ¢ = o(t, 1),

@ simple (stealth) solution reads

2

fop=1— L2
r 38

q
=qt+ dr —4/1—h
¢=q A%
with secondary hair qz = WZAT?B relating the couplings.
2 2
@ Interesting property X = —%gwama,,qs =—-3(-%+ qz%) = —% is constant

[Kobayashi, Tanahashi).
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Going beyond spherical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories
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Going beyond spherical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories

@ How do we implement rotation?
How can we explicitly construct rotating black holes beyond GR?

C. Charmousis Constructing scalar tensor black holes from Kerr geodesics



Going beyond spherical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories

@ How do we implement rotation?
How can we explicitly construct rotating black holes beyond GR?

@ For a start : Can we construct stealth rotating solutions with non trivial hair?
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Going beyond spherical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories

@ How do we implement rotation?
How can we explicitly construct rotating black holes beyond GR?

For a start : Can we construct stealth rotating solutions with non trivial hair?

For spherical symmetry we have a GR metric and X = —q2.
Can we obtain a Kerr metric with a non trivial scalar, such that X = —q?? This fails in
Horndeski
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Going beyond spherical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories

@ How do we implement rotation?
How can we explicitly construct rotating black holes beyond GR?

For a start : Can we construct stealth rotating solutions with non trivial hair?
For spherical symmetry we have a GR metric and X = —q2.

Can we obtain a Kerr metric with a non trivial scalar, such that X = —q?? This fails in
Horndeski A solution is Ricci flat only if there exists a flat foliation of the solution [cc, Gregory]
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Going beyond spherical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories

@ How do we implement rotation?
How can we explicitly construct rotating black holes beyond GR?

For a start : Can we construct stealth rotating solutions with non trivial hair?
For spherical symmetry we have a GR metric and X = —q2.

@ Can we obtain a Kerr metric with a non trivial scalar, such that X = —q?? This fails in
Horndeski A solution is Ricci flat only if there exists a flat foliation of the solution [cc, Gregory]

@ We need to know the scalar field explicitly.

@ The key is understanding what X = =GP signifies geometrically.
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ical symmetry?

We can find solutions of spherical symmetry

GR type solutions with X constant are generic in DHOST theories

@ How do we implement rotation?
How can we explicitly construct rotating black holes beyond GR?

@ For a start : Can we construct stealth rotating solutions with non trivial hair?

@ For spherical symmetry we have a GR metric and X = —q2A
@ Can we obtain a Kerr metric with a non trivial scalar, such that X = —q?? This fails in
Horndeski
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Hamilton-Jacobi and Schrodinger Separable Solutions
of Einstein’s Equations
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The Kerr black hole and its properties

@ Kerr black hole

2 2Mr > 4aMrsin6
ds" = —(1-— 2 dt pi

[(r2 +a%)? — aQAsinQQJ dep?

+"—2dr2 + p*d6?
A
where M is the mass, a is the angular momentum per unit mass, and
p2 =r4+ azcosze, A=r*+a°—2Mr.
@ Stationary and axisymmetric spacetime : two Killing vectors 9, O,
@ Spacetime is circular : (—t, —¢p) <> (t, )

@ Point singularity for a = 0 blows up to an equatorial ring singularity at p = 0
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ies of the Kerr black hole

R

Outer event horizon

ry =m+vm? —a?

Inner event horizon

r— =m—vm? — a2

Outer ergosurface

rf =m+Vm? = a? cos?0

Inner ergosurface

i =m—vm? —a? cos?0

Ring singularity Ergoregion

224+ y2=a2and 2 =0

Symmetry axis 6 = 0,7

@ O, Ot + wd, define observers.
@ Kerr has a causal exterior as long as it is a black hole!
@ Seperability properties will yield the geodesics but also a large class of type D solutions
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Carter's solution : adding a cosmological constant to Kerr

@ In the presence of a cosmological constant the rotating black hole is far more difficult to find.

@ Brandon Carter using separability arguments found a very general type D class of exact
solutions including the rotating solution

A 2 dr*  d6?
2 r .2 2
ds _7521)2 [dtfasm Gdap} +p (A,JFE)
Agsin0 2
+ B0 Lok~ (24 ) ]
2 2
r 5 5 _ a
A,:(176—2> (r+a)72Mr, ==1+5,
a 2 2 2 2 2
A9:1+e—2c050, p-=r"+a‘cosb,

@ Black hole parameters are a, M, A = 3//2 which describe a black hole with an inner, outer
event and cosmological horizon for A > 0.

@ Even if M = 0 the metric does not reduce to a trivial form of a de Sitter or anti de Sitter
metric.
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Carter’s constant

@ Using Hamilton-Jacobi formalism we may, symmetries permitting, write geodesic eqs as a
first order system. For that we need 4 constants of motion (for 4 dimensions).

@ For Kerr we have 3 constants of motion : E, L,, m. So in principle we would need to fix one
of the dimensions in order to study geodesics in HJ fashion.

@ The HJ equation reads :
os  ,, 0S8 0S 2

== = —m
oA OxH Oxv
@ where the HJ functional is S = —Et + L, + S(r, 0). Brandon Carter showed that
S(r,0) = S,(r) + So(0) is separable and the missing constant is Q Carter’s constant

S_ﬂ:/ . Sp=+ /—d&

= [ (7)ot

N [Q+z2(aE—LZ)2+m2r2] ,
L 2
o) = —=%in’0 <aE == )

EAY) [Q +=%(aE— L) — mzazcosze] .

R(r)
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Carter’s constant

Using Hamilton-Jacobi formalism we may, symmetries permitting, write geodesic egs as a
first order system. For that we need 4 constants of motion (for 4 dimensions).

For Kerr we have 3 constants of motion : E, L,, m. So in principle we would need to fix one
of the dimensions in order to study geodesics in HJ fashion.

The HJ equation reads :
os  ,, 0S8 0S 5

== = —m
oA OxH Oxv

where the HJ functional is S = —Et + L, + S(r, 0). Brandon Carter showed that

S(r,0) = S,(r) + So(0) is separable and the missing constant is Q Carter’s constant

S_ﬂ:/ . Sp=+ /—d&

= [e(F+) -aL]”

. [Q+z2(aE—LZ)2+m2r2] ,
2.2 L, \?
©) = —Z="sinf(aE-—

EAY) [Q +=%(aE— L) — mzazcosze] .

R(r)

Note we have E, m, L,, Q parametrising the Energy at infinity, rest mass, angular
momentum and Carter’s separation constant.

© and R are positive functions and their properties dictate many geodesic properties of
Carter or Kerr solution
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Stealth Kerr solution [cC, Crisostomi, Gregory and Stergioulas]

@ in DHOST | theory (with ¢g = 1) X = —q® and R,,,, = 0 is solution under certain
conditions.
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Stealth Kerr solution [cC, Crisostomi, Gregory and Stergioulas]

@ in DHOST | theory (with ¢g = 1) X = —q® and R,,,, = 0 is solution under certain
conditions.

@ Metric is Kerr

ds? = —% [dt - asin29d<p] 2 + p2 <dA—r2 + dez) + si;j@ [a dt — (r2 + 32) dtp} 2 s

Ay, = (r2 + 32) —2ur, p2 =+ 32cos29,

@ and X is constant in Kerr.

@ What is the scalar field painting this spacetime?

Carter found separable HJ potential S = —Et + L, + S,(r) + So(0) such that

S 0,S gl = —m’ «— 0,6 0, ¢ gl = —q°

@ Scalar is given by ¢ = S.
¢ needs to be defined everywhere in spacetime (Geodesics dont get to visit all of spacetime

necessarily!)
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Stealth Kerr [cC, Crisostomi, Gregory and Stergioulas]

@ The possible scalars for A = 0 read [carter],

P(t,r,0) = —Et+ Lo+ ¢r + ¢o with,

¢,,i/ ; ¢e:i/@d6,

R(r) = [E(erraz)faLz]z

N [Q+(aE—L,)2+m2r2} ,

o) = —sin’d (aE— L. )2

+ [Q +(aE — L) — m232cos29} .
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Stealth Kerr [cC, Crisostomi, Gregory and Stergioulas]

@ The possible scalars for A = 0 read [carter],

P(t,r,0) = —Et+ Lo+ ¢r + ¢o with,

¢,fi/ g ¢d9 = /fda

Ry = [E(7 +a)]
- Ao+ @EP+mA],
0(0) = —sin®0(aE)?
[2+ (aE)? — m*a’cos?0] .
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Stealth Kerr [cC, Crisostomi, Gregory and Stergioulas]

@ The possible scalars for A = 0 read [carter],

A/ q?(r? + a?)2Mr

#(t, r) :qt+/Tdr,
for E=m=4q,L;=0,Q=0

@ Going to Kerr coords we see that scalar is regular at the event horizon.
v:tifdr%, g?;::,aiafg—’r

@ For a = 0 we get spherical symmetry solution as before

@ We have a Kerr solution of DHOST | theory with non trivial scalar

@ What of A #0
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Rotating black hole with A > O (cc, crisostont, oregory and stergioutas]

@ Scalar reads,
#(t,r,0) = —Et+¢r+ o,

@—i/—dn g0 =+ /—dﬁ

O = a’m’sin’ O(Ag—n) 7R:m(r +a)(n (r +32)—A,)
where n = ZE € [, 1] where < 1 for © > 0.
@ 1) is the limiting value of R > 0. ie., it is such that R has a double zero at rey < rp < rcy
@ we have nc < 1 and as A increases 7. decreases

@ We have two branches of solutions. Going to EF coords we see that one chart is regular at
the EH while the latter at the CH but none are regular at both.
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Rotating black hole with A > O (cc, crisostont, oregory and stergioutas]

@ Scalar reads,
#(t,r,0) = —Et+¢r+ o,

@—i/—dn g0 =+ /—dﬁ

O = a’m’sin’ O(Ag—n) 7R:m(r +a)(n (r +32)—A,)
where n = ZE € [, 1] where < 1 for © > 0.
nc is the limiting value of R > 0. ie., it is such that R has a double zero at rey < ro < ren
we have . < 1 and as A increases 7). decreases

Fixing n = nc the two branches join with G, regularity at r = rp!

Then going from one branch to the other at r = r0, keeping ¢ — C? differentiable, we have
a regular scalar at the Event and Cosmological horizon.
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Constructing non Kerr rotating solutions fmsen, sasichev, co, rassaine]

@ Starting from stealth Kerr and using disformal transformations we can construct stationary
solutions of DHOST which are not stealth Kerr.

@ In fact, the disformed Kerr metrics with X constant and therefore D constant are,
K e K
8y — Buv = 80 + VudVid

for given D. Rotation creates a solution which has similar characteristics but is completely
distinct from the Kerr solution.

2/ 4y/T+ DMarsin®60 in%0
ds? = — (1 — ") - dvit DMarsin@ dtdy + sn (r2 + az>2 — 2*Asin®0 | dp?
p? p? p?

2Mr(a2 + r2
dr’ — 2D#dtdr + p2do? .

pPA — 2M(1 + D)rD(a* + r?)
+ 5
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Constructing non Kerr rotating solutions fmsen, sasichev, co, rassaine]

@ Starting from stealth Kerr and using disformal transformations we can construct stationary
solutions of DHOST which are not stealth Kerr.

@ In fact, the disformed Kerr metrics with X constant and therefore D constant are,
K e K
8y — Buv = 8y + VudVid

for given D. Rotation creates a solution which has similar characteristics but is completely
distinct from the Kerr solution.

2/ 4y/1 + DMarsin0 in®60
ds® = — (1 — 2r> de® — dvit DMarsin@ 5 arsim dtdy + 5|n2 [(r2 + 32)2 = a2Asin29} de?
p p p

2Mr(a2 + r2
dr’ — 2D#dtdr + p2do? .

p*A — 2M(1 + D)rD(a° + r*)
+ Az
-For D # 0 and a # 0 not an Einstein metric!
-Mass, angular momentum effected by D
-For D # 0 we do not verify the GR no hair relation
-Disformed Kerr is a one parameter family of well defined admissible alternatives to Kerr

Geodesics not integrable spacetime not circular for D # 0
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Conclusions

@ Brandon Carter’s insightful and important research helps out in unexpected ways future
generations of researchers
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