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Départment de Physique Théorique and Center for Astroparticle Physics

Carter Fest, July 4, 2022

Ruth Durrer (Université de Genève, DPT & CAP) Global Defects Paris, Juli 2022 1 / 17



Outline

1 Introduction

2 Scaling

3 Unequal time correlators

4 Application

5 Conclusions
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Motivation

As we understand the observable Universe has expanded and cooled from a very
hot initial state to the 2.7K which are its present temperature.

It is natural to expect that during this expansion and cooling, it underwent one or
several phase transitions.

A phase transition is described with an order parameter which is often a multi
component scalar field.

At the phase transition the minimum of the finite temperature potential of the
scalar field goes from φ = 0 to some finite value, |φ| = η, Tc ∼ η.

At temperatures T � Tc , the field φ lives on the N − 1 sphere |φ| = η in most of
the spacetime and leaves it only at a significant cost of energy in order to avoid
very large gradient energy. These are the locations of the topological defects.

In 4 spacetime dimensions the defects are cosmic strings for N = 2, monopoles
for N = 3 and ’textures’ for N = 4. Scalar fields with more than 4 components do
not lead to defects in 4 spacetime dimensions.

In the case of global defects, most of the field energy is actually in the gradient
energy and not in the potential energy at the position of the defect and we can
very well describe them as a non-linear sigma-model.
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Motivation

Introducing β = φ/η, the equation of motion of the non-linear σ-model is simply

�β − (β ·�β)β = 0, β2 = 1 , � = ∂2
t + 2H∂t −∆ .

(β · α) =
N∑

i=1

βiαi .

Clearly, the only scale in the problem is the Hubble scale.
It is therefore natural to expect that the solutions are scaling, i.e. functions of rH or r/t .

In contrast to the typical cosmic string, for global defects without a gauge field the field
gradient energy cannot be ’compensated by the gauge field.
For this reason they are ’thick’ with a typical scale determined by the Hubble scale.

It is well known that the mean energy density scales, 〈ρφ〉 ∼ η2/t2, but we want to
argue that also the fluctuations obey scaling laws.

In the large N limit we may replace (β ·�β) = −(∂µβ · ∂µβ) by its expectation value
and in this way remove the non-linearity.
The field equation can then be solved exactly in Fourier space

β(k , t) = At3/2 Jν(kt)
(kt)ν

βini , H =
ν − 1

t
.
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Effects of defects on structure formation

We now want to study the effect of such cosmological defects on cosmic structure
formation in the regime where linear perturbation theory is valid. We consider a large
set of variables, e.g. the CMB anisotropies and polarisation or the matter density and
velocity fields in Fourier space etc.

They interact with the defect energy momentum tensor via gravity. This can be cast in
the form of linear time dependent differential equations in Fourier space

DXj = Mj
iFi

which can be solved via their Green’s function,

Xj (k, t) =

∫ t

tin

Gj
i (t , t ′, k)Fi (k, t ′)dt ′ .

Here the Fi are the stochastic components of the defect energy momentum tensor and
the Xj are stochastic variables describing cosmic observables.
What we can compute are not these stochastic variables, but their correlation functions
or power spectrum. For reasons of homogeneity and isotropy

〈Fi (k, t)Fj (k′, t ′)〉 = (2π)3δ(k− k′)Cij (k , t , t ′) .
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The importance of scaling

Once the unequal time correlation functions Cij (k , t , t ′) of the defect source energy
momentum tensor are known, all power spectra in Fourier space are simply calculated
as integrals with the corresponding Green’s function.

In principle, these functions of 3 variables (k , t , t ′) which are of fourth order in the field
variable β,

T (s)
µν =

η2

a2 [∂µβ · ∂νβ −
1
2

gµν(∂λβ · ∂λβ)]

have to be determined with numerical simulations.
Considering that the defects form at very high energy, T ∼ 1015GeV hence
t ∼ 10−28t0. No computer simulation can reach a dynamical range of 28 orders of
magnitude or similar... A new idea is needed :

SCALING

It is reasonable to assume that the unequal time correlation functions only depend on
the dimensionless variables x = kt and x ′ = kt ′ or on the ratio r = t ′/t . By definition
they are symmetric in x and x ′ or under r → 1/r .
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Scaling

It makes sense to assume that the Cij tend to a constant value on super horizon scales,
x = kt → 0 and inside the horizon the fields align and the Cij tend to zero. We also
expect them to be maximal for t = t ′, i.e. r = 1 and to decay for r →∞ or r → 0. We
therefore only have to find the value of these correlations functions at x = 0, r = 1 and
to determine the power law of the fall off. This can be done with good accuracy in a few
103 cubed simulations. Which, nowadays in very feasible with a moderate
supercomputer.

Symmetry under rotation, translation and parity allows to reduce the problem to 5
correlators.
2 from scalar degrees of freedom of T (s)

µν which can be cast in terms of the Bardeen
potentials and one vector and one tensor correlator.

k4√tt ′〈Ψs(k, t)Ψ∗s (k′, t ′)〉 = (2π)3δ(k + k′)η4C1(x , r) ,

k4√tt ′〈Φs(k, t)Φ∗s (k′, t ′)〉 = (2π)3δ(k + k′) η4C2(x , r) ,

k4√tt ′〈Φs(k, t)Ψ∗s (k′, t ′)〉 = (2π)3δ(k + k′)η4C3(x , r) .
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Scalar perturbations : the Bardeen potentials for ’texture’ (a) and
in the large N limit (b) (Durrer et al. 2002)
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Scalar perturbations : the Bardeen potentials for ’texture’ (a) and
in the large N limit (b) (Durrer et al. 2002)

Cuts : Ci (x , 1) (left) and
Ci (0, r) (right). Black
the Φ-correlator, blue the
Ψ-correlator and red the
cross correlation.
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Vector perturbations (a) ’texture’ (b) the large N limit (from Durrer et al.
2002)

x

x

FIG. 6. The vector correlator W (z, r) is shown. The
texture simulations, panel (a), and the large-N limit, panel
(b), give very similar results.

proximation, (113), leaves open a choice of sign which has
to be positive if i = j, but which is undetermined oth-
erwise. According to Schwarz inequality the correlator
〈Si(t)S∗

j (t′)〉 is bounded by

−
√

〈|Si(t)|2〉〈|Sj(t′)|2〉 ≤ 〈Si(t)S∗
j (t′)〉 ≤

√
〈|Si(t)|2〉〈|Sj(t′)|2〉. (114)

Therefore, for scales/variables for which the Greens func-
tion is not oscillating (e.g. Sachs Wolfe scales) the full
result always lies between the ’anti-coherent’ (minus sign)
and the coherent result. We have verified this behavior
numerically.

The first evidence that Doppler peaks are suppressed
in defect models has been obtained in the perfectly co-
herent approximation in Ref. [24]. In Fig. 13 we show the
contributions to the C!’s from more and more eigenvec-
tors. A perfectly coherent model has only one non-zero
eigenvalue.

A comparison of the full result with the totally coher-
ent approximation is presented in Fig. 14. There one

FIG. 7. The vector correlator W (z, 1) is plotted. The solid
line represents the texture simulations and the dashed line is
the large-N result. Up to a slight difference in amplitude, the
two results are very similar.

FIG. 8. The vector correlator W (0, r) is shown. The solid
line represents the texture simulations and the dashed line is
the large-N result. Also here, the two results are very similar.
The ’wings’ visible in the texture curve are probably not due
to a resolution problem but the beginning of oscillations.

sees that decoherence does smear out the oscillations
present in the fully coherent approximation, and does
somewhat damp the amplitude. Decoherence thus pre-
vents the appearance of a series of acoustic peaks. The
absence of power on this angular scale, however, is not
a consequence of decoherence but is mainly due to the
anisotropic stresses of the source which lead to pertur-
bations in the geometry inducing large scale C!’s (Sachs
Wolfe), but not to density fluctuations. Large anisotropic
stresses are also at the origin of vector and tensor fluctu-
ations. Our results are in agreement with Refs. [24] and
[5] but we disagree with Ref. [25], which has found acous-
tic peaks with an amplitude of about six in the coherent
approximation.

In the real universe, perfect scaling of the seed corre-
lation functions is broken by the radiation–matter tran-
sition, which takes place at the time of equal matter and

radiation, teq % 20h−2Ω
−1/2
m Mpc. The time teq is an

additional scale which enters the problem and influences
the seed correlators. Only in a purely radiation or mat-
ter dominated universe are the correlators strictly scale

12
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the seed correlators. Only in a purely radiation or mat-
ter dominated universe are the correlators strictly scale
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Cuts : W (x , 1) (top) and
W (0, r) (bottom). Solid
the ’texture’ simulation,
dashed the large N limit.
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Tensor perturbations (a) ’texture’ (b) the large N limit (from Durrer et al.
2002)
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FIG. 9. As Fig. 6, but for the tensor source function
T (z, r).

invariant. This means actually that the k dependence of
the correlators C, W and T cannot really be cast into
a dependence on x and x′, but that these functions de-
pend on t, t′ and k in a more complicated way. We have
to calculate and diagonalize the seed correlators for each
wave number k separately and the huge gain of dynami-
cal range is lost as soon as scaling is lost.

In the actual case at hand, however, the deviation from
scaling is weak, and most of the scales of interest to us
enter the horizon only in the matter dominated regime.
The behavior of the correlators in the radiation domi-
nated era is of minor importance. To solve the problem,
we calculate the correlator eigenvalues and eigenfunctions
twice, in a pure radiation and in a pure matter universe
and we interpolate the source term from the radiation to
the matter epoch. Denoting by λm, vm and λr, vr a given
pair of eigenvalue and eigenvector in a matter and radia-
tion universe respectively, we choose as our deterministic
source function

v(t) = y(t)
√

λrvr(kt) + (1 − y(t))
√

λmvm(kt) (115)

with, e.g.,

FIG. 10. As Fig. 7, but for the tensor source function
T (z, 1).

FIG. 11. As Fig. 8, but for the tensor source function
T (0, r).

y(t) =
teq

t + teq
or y(t) = exp(−t/teq) , (116)

or some other suitable interpolation function. In Fig. 15
we show the results for scalar, vector and tensor pertur-
bations respectively using purely radiation dominated era
and from interpolated source terms.

Clearly the effect of the radiation dominated early
state of the universe is relatively unimportant for the
scales considered here. The difference between the pure
matter era result and the interpolation is barely visible
and thus not shown on the plot. This seems to be quite
different for cosmic strings where the fluctuations in the
radiation era are about twice as large as those in the mat-
ter era [26]. The radiation dominated era has very little
effect on the key results which we are reporting here;
namely the absence of acoustic peaks and the missing
power on very large scales.

In models with cosmological constant, there is actually
a second break of scale invariance at the matter–Λ tran-
sition. There we proceed in the same way as outlined
above. Since defects cease to scale and disappear rapidly
in an exponentially expanding universe, the eigenvalues
for the Λ dominated universe all vanish.
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Calculating fluctuation spectra

These unequal time correlators can now be used to solve the linear perturbation
equations. Usually one Diagonalized Ci (k , t , t ′) in t , t ′,∫

dt ′Cij (k , t , t ′)S∗j (k , t ′, n) = λn(k)Si (k , t , n) .

Here λn(k) is an the eigenvalue and Si (k , t , n) an eigenvector of the unequal time
correlator Ci (k , t , t ′).

One can then solve the linear perturbation equations for the deterministic source terms√
λnSi (n) and add the contributions from the 200 or so highest eigenvalues.

This program has been carried out for global defects, for the large N limit (of global
defects) and for cosmic strings (Abelian Higgs model) for which the unequal time
correlators also scale.
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Results for CMB fluctuations from global texture
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(Durrer et al. 2002)

The contributions from the highest
eigenvalues to the CMB temperature
anisotropies from global texture in units
(4πGη2)2 = µ2.

Note that the scalar and vector perturba-
tions have comparable amplitudes.

Also note the ’smearing out’ of the
acoustic peaks due to the sum over
many eigenvalues⇒ decoherence.
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Results for CMB fluctuations from the large N limit (Fenu et al. 2014)

(Results from the sum over 200 eigenvectors.)
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Results for CMB fluctuations from cosmic strings (Lizarraga et al. 2016)
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Total CMB spectra for temperature and B-polarisation from Abelian Higgs model
cosmic strings (field theory simulation).

Results obtained using 256 eigenvectors from (4096)3 simulations
(Daverio et al. 2015).
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Conclusions

Scaling is a necessary ingredient to compute the induced fluctuation power
spectra from global (and local) defects.

In the realistic Universe scaling is broken by the radiation→ matter transition and
by the matter→ Λ transition. Taking into account this transitions changes the
power spectra by up to 25%.

Spectra from defects do not show a coherent sequence of acoustic peaks in the
temperature anisotropies and are therefore not responsible for the observed
signal. They can at best contribute a few % .

Studying defects we have learned a lot about the very special nature of inflationary
perturbations, which are coherent over scales much larger than the Hubble
horizon after inflation.
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Happy Birthday, Brandon !
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