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Relativistic superfluids & neutron stars
with Brandon

| met Brandon in 1991 when | started my PhD in Meudon.

« First, many discussions on history at lunch time...

A NEUTRON STAR: SURFACE and INTERIOR

* 9 papers (1994-2000) with Brandon .S WEETTTT
Relativistic two-constituent superfluids, e R
vortices, superconductors
Applications to neutron stars

s ATMOSPHERE

ENVELOPE

— 2 papers in Phys. Rev. B (and cond-mat),
with Reinhard Prix
— 2 papers with David Sedrakian

 From 2000, back to cosmology (braneworlds) Credit: Dany Page



Black hole perturbations

GW astronomy provides new windows to test GR, in particular in
the strong field regime.

Inspiral Merger Ring-
down

Ringdown phase of a BH merger () c 0

is interesting for modified gravity
models; it can be described by BH linear perturbations.

Modified gravity: most general framework of scalar-tensor
theories propagating a single scalar degree of freedom DHOST
(Degenerate Higher-Order Scalar-Tensor) theories

Based on work with Karim Noui & Hugo Roussille ’21, ‘22



DHOST theories

« Action of quadratic DHOST [DL & Noui "15]
/d4x\/— P(X,$) + Q(X,¢)0¢ + F(X, $) R+ZA (X, ) L%
1=1
X =V,oVH
L =g 0, LY = (0¢)%, LY = (06)¢" puve” B OV
LD = 0,676, . L2 = (8 6y6")’ Pn = Vud
(b,uy = vuv,u¢

The functions I and A; satisfy three degeneracy conditions.

Extension to cubic order (in¢,,,) [Ben Achour et al *16]
10
L® = F3(X, 9)G ™ + Y Bi(X,¢)L"
1=1
DHOST includes Horndeski, Beyond Horndeski, Einstein-scalar-
Gauss-Bonnet

e.g. (quadratic) Horndeski: A1 = —A; =2Fx, A3=A,=A5=0



Disformal transformations

Transformation 9ur — Guw = C(X,0) g + D(X, 9) 0,0 0, ¢

From an action S [®, G,] , one gets the new action

S[¢7g,ul/] = g [¢a gul/ — Cg,uu +D ¢M¢V]

DHOST families
are closed
under these
transformations

When standard fields are (minimally) included, two disformally
related theories are physically inequivalent !

S[g,ul/a ¢] + Sm [\Ijma gw/]

Beyond Homdeskll
C(¢), D(X, ¢) .

C(X’ ¢)’

DHOST

D(X, ¢)

Type |

Type ll

* g[g,ul/a ¢] + Sm[qu,guy]




BH background solution

« Static spherically symmetric BH with a nontrivial scalar field

dr?
B(r)

— Metric:  ds? = —A(r)dt> + +C(r)(d6? + sin? 0 d?)

— Scalar field: qb(t, T) —qt+ w(r) [Babichev & Charmousis ‘13]

[q # 0 possible in shift-symmetric theories ]

- Examples:
— « stealth » Schwarzschild: 4 =53 =1 — H

r
2
— « BCL » [Babichev, Charmousis & Lehébel ‘17] A=B=1-— K g,u_
r 22

2u/r

— « 4d Gauss-Bonnet » [Lu & Pang ‘20] A=B=1-—
1+ /1 +4dau/rs

— Scalar-Gauss-Bonnet [Julié & Berti '19] A=B=1-"4 az(r)e® + . ..
r



Black hole perturbations

* In the frequency domain:

Flt.r) = fr)e i

+  Axial (or odd) modes: ho(r), hi(r)

0 0 L hEimo, —sinOhi™0p

sin 0

B 0 0 —=5him0, —sinbhi™0y
h:ul/ - ez Sym Sym O O nm(97 90)
™\ sym  sym 0 0

« Polar (or even) modes: Hg, H, Ho, K (and 0¢)

A(r)Hg™(r) Hi™ ()

0 0

_ Hy™(r)  A7H(r)Hy™(r) 0 0

DS 0 0 KO () 2 0
fm 0 0 0 K (r) r? sin*6

[ Regge-Wheeler gauge ]



Axial modes in GR

* The linearised metric eqgs yield only 2 independent eqs

——=M)Y(r), Y= (h??a)

or, in a Schroedinger form, [Regge & Wheeler ‘57]

d’Y )
d—Tz_'_(wQ_V(T))Y:O 30'3;

~
[ 7, tortoise coordinate ]
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« Asymptotically (r, — —oco, +00)
e—iwt Y(T’) ~ ay e—iw(t—r*) +a_ e—iw(t—l—r*)
outgoing ingoing

« Quasi-normal modes: a}fr =0 and a= =0



Axial modes in DHOST

 The equations have a similar structure:

dY 2/r + iw¥  —iw? + 2I\D /1r?

— = MY M = . .

dr ’ ( —i A+ wW W e+
-2

where ¥, ®,1"and A depend on the Lagrangian’s functions and

on the background.

1 1
F=AF — (¢° + AX)A; — _AB¢/X/F3X — —B¢’(AX)’B2 — %(Bwl)gX/BGa
1 (AX 1
F\Ij —q [wlAl 4 = (B¢/2) _'_ - (A ) B - (82¢/4) BG] ,
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3= Fy — XA, — §B¢/X/F3X — §B¢/< C ] By — §B¢/XX/B67
=02t 2¢° Ay + 2AF; + ABY' X' Fsx + ¢° (AX)/B +¢*By'X'B )
2> ABF ! ? T gy ")
/ / /
A — _.7-" B A

F 28 oA



Axial modes in DHOST

 The equations have a similar structure:

ay (2/7“ +iwl  —iw? + 20D /r?

— =MY, M= : :
7 , —i A+ wW ) e+
-2

where ¥, ®,1"and A depend on the Lagrangian’s functions and
on the background.

« After time redefinition, one can get a Schroedinger-like equation

d2 2
—y—|—< * —V(T)>y:() drzn(r)

dri — \c(r)

where ¢, (r) and V(r) depend on the choice (7).




Effective metric for axial modes

« Correspondence

DHOST axial modes in g,,,, > GR axial modes in ¢,,,,

with the effective metric

I'B

ds* = g, datdz” = |F]| 7

(—®(dt — Wdr)® + T® dr* + C dQ2?)

* Quadratic DHOST theories
The disformal transformation such that /' = 1 and A; = 0 vyields

. Aq
Juv — \/F(F — XAl) (g,uy + F_ XAl ¢u¢u)

which coincides with G,



Example: stealth Schwarzschild

 (Coefficients

B Cr;/2r3/2 or—r (14 ¢Q)r? 1 1
\P_(r—rs)(r—rg)’ (I)_(1—|—C31r’ F_(r—rg)Q’ A_;_r—rg
C = 2q2@7 Ig = (1+C)Ts [C:O GR]

« Effective metric: Schwarzschild with a displaced horizon

-1
ds* = — ( — %) dT? + (1 — %) dR* 4+ R*d$)? [R = (1+ 01/44

 Potential [with ¢(r) = 1]
[ see also Tomikawa &

) 00+ 1)r — 3ry Kobayashi ‘21 ]
(L+¢)rs

Vemr (r) = (1= 2

r

Same potential as in GR, but with 7y instead of 75 (and a rescaling).



Other effective metrics

2

. BCL solution: A—=B—1-H_¢#

r 22

2

ds® = \/1 - 5% [—A(fr)dt2 +

<1 -+ f'uz> dr? + r2dﬂ2]
A(r) r2

BH geometry with the same horizon

 4d Gauss-Bonnet solution: A=8B=1- 2p/
1+ /1 +4dau/rs
32 ~ _ _1\1/4 342 C2 9 C3 9
ds® ~ —ci(z—1)"/"%dt +(z_1)5/4dz +(z—1)1/4dQ
z=r/ry]

Naked singularity



Polar modes

The linearised metric equations yield
— 2 independent equations in GR (1 dof)
— 4 independent equations in DHOST theories (2 dof)

In GR: 2-dimensional system Y’ = MY  which can be written in a
Schroedinger form. [Zerilli 70]

In DHOST, the system Y’/ = M Y is now 4-dimensional, with
Y =K 6¢ H, Hp)

It is convenient to do an asymptotic analysis of the first-order
system.



Asymptotics of a diffential system

Instead of a Schroedinger-like approach, one can use directly the
initial first-order equations of motion and their asymptotic limit:

dY
E—:Aﬂ@yg M(2)=M.2" 4+ M,_12" +... (z— o0)
Z

The generic solution is of the form
Y(2) =e¥® A F(2) Yy, (z = o0)

There exists a well-defined algorithm to determine the diagonal
matrices Y'(z) and A.  [Balser ‘99]

Idea: diagonalise, order by order, the matrix M, with Y (z) = P(2) Y ()

day - - . dP
= M((Y M(z)=P 'MP - P 1 —



Polar modes

Study the asymptotic behaviour of the 4-dim system at spatial
infinity and near the horizon, and extract the asymptotic
independent modes.

At spatial infinity, one can identify
— 2 « gravitational » modes
— 2 « scalar» modes

Similar results near the horizon

Well-behaved asymptotic « scalar » modes for EsGB, although not
for stealth Schwarzschild, BCL and 4d-GB.



Conclusions

Analysis of the BH linear perturbations in DHOST theories

Axial modes: Correspondence between DHOST axial modes and
GR axial modes in an effective metric.

Polar modes: the structure is much more complicated than in GR
(4-dim system).

Systematic approach to disentangle the modes asymptotically.
Also useful to get the boundary conditions for numerical integration.

Happy birthday Brandon !



