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The term ’cosmic no-hair theorem’ should not be

understood literally!
All inflationary models, in spite of locally approaching the de
Sitter space-time inside the Hubble radius, have scalar and
tensor ’hair’ - spatial inhomogeneity - outside it. This
inhomogeneity does not disappear with time. Just the
opposite, its amplitude at a given comoving scale typically
remains constant not only during inflation, but long time after
its end up to the moment of the second Hubble radius crossing
of this scale. Moreover, a part of scalar inflationary hair have
been already observed through measurements of CMB angular
temperature anisotropy and polarization, and we expect the
discovery of tensor hair (primordial gravitational wave
background from inflation) in future. In terms of ’no-hair’
theorems, this situation is similar, but just opposite to that in
General Relativity (GR), where we have the no-hair property of
black holes outside their event horizons, but not inside them.



GR with a cosmological constant
De Sitter is not a generic late-time attractor!
Generic late-time asymptote of classical solutions of GR with a
cosmological constant Λ both without and with hydrodynamic
matter (A. A. Starobinsky, JETP Lett. 37, 55 (1983), also
called the Fefferman-Graham expansion):

ds2 = dt2 − γikdx
idxk

γik = e2H0taik + bik + e−H0tcik + ...

where H2
0 = Λ/3 and the matrices aik , bik , cik are functions of

spatial coordinates. aik contains two independent physical
functions (after 3 spatial rotations and 1 shift in time +
spatial dilatation) and can be made unimodular, in particular.
bik is unambiguously defined through the 3-D Ricci tensor
constructed from aik . cik contains a number of arbitrary
physical functions (two - in the vacuum case, or with
radiation) - classical tensor hair.



Power-law inflation - scalar hair

A similar but more complicated construction with an
additional dependence of H on spatial coordinates in the case
of power-law inflation driven by a scalar field with an
exponential potential:

L = −R

2
+

1

2
g ikΦ,i Φ,k − V0e

−µΦ, a(t) ∝ tq, q =
2

µ2
� 1

(8πG = c = 1).
Generic late-time asymptote with both classical scalar and
tensor hair (V. Müller, H.-J. Schmidt and A. A. Starobinsky,
Class. Quant. Grav. 7, 1163 (1990)):



ds2 = dt2 − t2qhαβdx
αdxβ ,

hαβ = aαβ +
∑

n

b
(n)
αβ t

−n ,

Φ =
2

µ
ln t −

∑
n

Φ(n)t−n ,

where n ∈ kn1 + ln2, k = 3q − 1, l = 2(q − 1), n1, n2 integers
≥ 0, but at least one of then has to be positive.

Similar solution for the conformally related
L = f (R) ∝ RM , 1 < M < 2 gravity where q = (M−1)(2M−1)

2−M
.



For viable inflationary cosmological models, in which the
duration of an inflationary stage is finite for any observer inside
our past light cone, inflation is an intermediate attractor.

Theorem. In inflationary models in GR and f (R) gravity, there
exists an open set of classical solutions with a non-zero
measure in the space of initial conditions at curvatures much
exceeding those during inflation which have a metastable
inflationary stage with a given number of e-folds.

For the R + R2 model, this was proved in A. A. Starobinsky
and H.-J. Schmidt, Class. Quant. Grav. 4, 695 (1987).



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation in the synchronous gauge with some additional
conditions fixing it completely:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2R(r)δlm +
2∑

a=1

g (a)(r) e(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

R describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).
The most important quantities:

PR(k),
d lnPR(k)

d ln k
≡ ns(k)− 1, r(k) ≡ Pg

PR

Both |ns − 1| and |r | are small during slow-roll inflation.



Existence of constant (quasi-isotropic) modes
For FLRW models filled by ideal fluids, it was known already
to Lifshitz (1946). For a wide class of modified scalar-tensor
gravity theories, it was proved in A. A. Starobinsky,
S. Tsujikawa and J. Yokoyama, Nucl. Phys. B 610, 383
(2001). However, their existence is much more general. From
the mathematical point of view, constant modes appear simply
due to the existence of non-degenerate solutions of the same
gravity models in the isotropic and spatially flat FLRW
space-time. By construction, these solutions always have 3
non-physical (gauge) arbitrary constants of integration due to
the possibility of arbitrary and independent rescaling of all
spatial coordinates. Making these constants slightly
inhomogeneous converts them to the leading terms of physical
constant modes (one scalar and two tensor ones). Moreover,
these constants (now functions of spatial coordinates) need not
be small, they can be arbitrarily large: a2(t)δβα → a2(t)cβα(r).



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



New cosmological parameters relevant to inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1

H has been discovered (using
the multipole range ` > 40):

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = (2.10± 0.03)·10−9

(
k

k0

)ns−1

k0 = 0.05 Mpc−1, ns − 1 = −0.035± 0.004

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2. (note that (1− ns)NH ∼ 2).



The most recent upper limits on r

1. BICEP/Keck Collaboration: P. A. R. Ade et al., Phys. Rev.
Lett. 127, 151301 (2021); arXiv:2110.00483:

r 0.05 < 0.036 at the 95% C.L.

2. M. Tristram et al., Phys. Rev. D 105, 083524 (2022);
arXiv:2112.07961:

r 0.05 < 0.032 at the 95% C.L.

For comparison, in the chaotic inflationary model V (ϕ) ∝ |ϕ|n,
r = 4n

N
, 1− ns = n+2

2N
. The r upper bound gives n < 0.5 for

N0.05 = (55− 60), but then 1− ns ≤ 0.022. Thus, this model
is disfavoured by observational data.



Kinematic origin of scalar perturbations

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different in different points of space: Ntot = Ntot(r). Then

R(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot (r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



Visualizing small differences in the number of

e-folds
Duration of inflation in terms of e-folds was finite for all points
inside our past light cone. For ` . 50, neglecting the Silk and
Doppler effects, as well as the ISW effect due the presence of
dark energy,

∆T (θ, φ)

Tγ
= −1

5
R(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,PR = P0,

`(` + 1) 〈(∆T/Tγ)2
lm〉 =

2π

25
P0

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV, like in

the minimal (one-parametric) inflationary models, δt ∼ 5tPl !

Planck time intervals are seen by the naked eye!



Quantum inflationary scalar and tensor hair

Successive construction of viable slow-roll inflationary models
is based on two independent assumptions.

1. Existence of a metastable quasi-de Sitter stage in our
remote part which preceded the hot Big Bang. During it, the
expansion of the Universe was accelerated and close to the
exponential one, |Ḣ | � H2.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of pairs of particles -
antiparticles and field fluctuations during inflation from the
adiabatic vacuum (no-particle) state for Fourier modes
covering all observable range of scales (and possibly somewhat
beyond).



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in R, g).

In particular:

R̂k = Rk i(âk−â†k)+O
(

(âk − â†k)2
)

+...+O(10−100)(âk+â†k)+, , ,

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



All these predictions are beyond semiclassical gravity!

Semiclassical gravity: space-time metric gik is not quantized
and

1

8πG

(
Rν
µ −

1

2
δνµR

)
(gik) =

〈
T̂ ν
µ

〉
Instead,

1

8πG

(
R̂ν
µ −

1

2
δνµR̂

)
(ĝik) = T̂ ν

µ

is used.

〈R〉 = 0 does not mean the absence of perturbations.



Perturbative anomalous growth of light scalar

fields in the de Sitter space-time
Background - fixed - de Sitter or, more interestingly, quasi-de
Sitter space-time (slow roll inflation).
Occurs for 0 ≤ m2 � H2 where H ≡ ȧ

a
, a(t) is a LFRW scale

factor. The simplest and textbook example:
m = 0, H = H0 = const for t ≥ t0 and the initial quantum
state of the scalar field at t = t0 is the adiabatic vacuum for
modes with k/a(t0)� H0 and some infrared finite state
otherwise:

< φ2 >=
H2

0N

4π2
+ const

Here N = ln a
a(t0)
� 1 is the number of e-folds from the

beginning of inflation and the constant depends on the initial
quantum state (Linde, 1982; AS, 1982; Vilenkin and Ford,
1982).
Straightforward generalization to the slow-roll case |Ḣ | � H2.



For 0 < m2 � H2, the Bunch-Davies equilibrium value

< φ2 >=
3H4

0

8π2m2
� H2

0

is reached after a large number of e-folds N � H2
0

m2 .
Purely infrared effect - creation of real field fluctuations;
renormalization is not important and does not affect it.

For the de Sitter inflation (gravitons only) (AS, 1979):

Pg (k) =
16GH2

0

π
; < hikh

ik >=
16GH2

0N

π
.

The assumption of small perturbations breaks down for
N & 1/GH2

0 . Still ongoing discussion on the final outcome of
this effect. My opinion - no screening of the background
cosmological constant, instead - stochastic drift through an
infinite number of locally de Sitter, but globally non-equivalent
vacua.



But scalar perturbations are always larger than tensor ones in
slow-roll inflationary models, and they become non-linear at
very large scales earlier!
Stochastic approach to inflation (”stochastic inflation”):

R̂ν
µ −

1

2
δνµR̂ = 8πGT̂ ν

µ (ĝαβ)

- not as a function of < ĝαβ > !
Leads to QFT in a stochastic background.
Stochastic inflation:
1) can deal with an arbitrary large (though sufficiently
smooth) global inhomogeneity;
2) takes backreaction of created fluctuations into account;
3) goes beyond any finite order of loop corrections.
Fully developed in Starobinsky (1984,1986) though the first
simplified application (but beyond the one-loop approximation)
was already in Starobinsky (1982).
1. A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
2. A. A. Starobinsky, Lect. Notes in Physics 246, 107 (1986).



Langevin equation for the large-scale field
The first main idea: splitting of the inflaton field φ into a
large-scale and a small-scale parts with respect to H . More
exactly, the border is assumed to lie at k = εaH with

exp
(
−H2

|Ḣ|

)
� ε� 1.

The second main idea: a non-commutative part of the
large-scale field is very small (it is composed from decaying
modes), so we may neglect it. Then the remaining part is
equivalent (not equal!) to a stochastic c-number (classical)
field with some distribution function.

dφ

dτ (n)
= − 1

3Hn+1

dV

dφ
+ f ,

< f (τ
(n)
1 ) f (τ

(n)
2 ) >=

H3−n

4π2
δ(τ

(n)
1 − τ (n)

2 ) .

The time-like variables τ (n) =
∫
Hn(t, r) dt, where

H2 = 8πGV (φ)/3.



This is not a time reparametrization t → f (t) in GR. Different
τ (n) describe different stochastic processes and even have
different dimensionality. Different ”clocks” are needed to
measure them:
1) n = 0: phase of a wave function of a massive particle
(m� H);
2) n = 1: scalar metric perturbations (δN formalism);
3) n = 3: dispersion of a light scalar field generated during
inflation

< χ2 >=
1

4π2
<

∫
H3 dt >=

< τ (3) >

4π2
.

See F. Finelli et al., Phys. Rev. D 79, 044007 (2009) for
more details.



The Gaussian white noise f describes the flow of small-scale
linear field modes through the border k = εaH to the
large-scale region in the course of the universe expansion.

Applicability conditions – the standard slow-roll ones:

V ′2 � 48πGV 2, |V ”| � 8πGV /3



Einstein-Smoluhovsky (Fokker-Planck) equation

∂ρ

∂τ
=

∂

∂φ

(
V ′

3Hn+1
ρ

)
+

1

8π2

∂2

∂φ2

(
H3−nρ

)
.

Probability conservation:
∫
ρ dφ = 1.

Remarks

I More generally, the last term can be written the form

1

8π2

∂

∂φ

(
H (3−n)α ∂

∂φ

(
H (3−n)(1−α)ρ

))
with 0 ≤ α ≤ 1.
α = 0 – Ito calculus.
α = 1/2 – Stratonovich calculus.
However, keeping terms explicitly depending on α exceeds
the accuracy of the stochastic approach. Thus, α may
put 0.



I All results are independent of the form of a cutoff in the
momentum space as far as it occurs for k � aH (ε� 1).

I Backreaction is taken into account: δT ν
µ = (V −Vclas) δνµ.

I No necessity in any infrared cutoff. Problems with the so
called ”volume weighting” arise because quantities like
a3ρ are considered which are not normalizable, thus, they
may not be considered as probabilities of anything from
the mathematical point of view (”unitarity breaking”).
Their physical justification is also flawed since it based on
the wrong assumption that all Hubble physical volumes
(”observers”) emerging from expansion of a previous
inflationary patch are clones of each other while it is not
so.



Transition to predictions for the post-inflationary

evolution

From ρ(φ, τ) during inflation to the distribution w(τ) over the
total local duration of inflation:

w(τ) = lim
φ→φend

j = lim
φ→φend

|V ′|
3Hn+1

ρ(φ, τ) .

For the graceful exit to a post-inflationary epoch, the
stochastic force should be much less than the classical one
during last e-folds of inflation.

The same way to obtain the joint distribution w(0, τ1; |r|, τ2)
from the 2-point joint probability distribution
ρ(φ1, 0, τ1;φ2, |r|, τ2) during inflation.



Probabilities to go to different vacua after inflation

Let inflation may end in two vacua: φ = φ1 and φ = φ2 with
V (φ1) = V (φ2) = 0 (to consider a larger number of
post-inflationary vacua, φ should have more than
one-dimensional internal space).

φ1 φ2φ3 φ4 φ

V



Boundary conditions at the end of inflation:
ρ(φ1, τ) = ρ(φ2, τ) = 0.

Method of calculation (Starobinsky (1984,1986), see also
V. Vennin and A. A. Starobinsky, Eur. Phys. J. C 75, 413
(2015); arXiv:1506.04732 for more details): consider the
quantities

Qm(φ) =

∫ ∞
0

τmρ(φ, τ) dτ

where τ = 0 corresponds to the local beginning of inflation.
Qm(φ1) = Qm(φ2) = 0.

By integrating the Fokker-Planck equation over τ , we get for
m = 0:



Q0(φ) =
8π2

H3−n
exp

(
π

GH2(φ)

) ∫ φ

φ1

dψ exp

(
− π

GH2(ψ)

)
×

(
C0 −

∫ ψ

φ1

ρ0(ψ1) dψ1

)
,

C0 =

∫ φ2

φ1
dφ exp

(
− π

GH2(φ)

) ∫ φ
φ1
ρ0(ψ) dψ∫ φ2

φ1
dφ exp

(
− π

GH2(φ)

) .

P1 = C0 – the absolute probability to go to the vacuum
φ = φ1;
P2 = 1− C0 – the absolute probability to go to the vacuum
φ = φ2.
No n dependence in C !



Local duration of inflation

Q1(φ) =
8π2

H3−n
exp

(
π

GH2(φ)

) ∫ φ

φ1

dψ exp

(
− π

GH2(ψ)

)
×

(
C1 −

∫ ψ

φ1

Q0(ψ1) dψ1

)
,

C1 =

∫ φ2

φ1
dφ exp

(
− π

GH2(φ)

) ∫ φ
φ1
Q0(ψ) dψ∫ φ2

φ1
dφ exp

(
− π

GH2(φ)

) .

< τ1 >=
C1

C0
, < τ2 >=

C̃1

1− C0
,

< τ >tot= C0 < τ1 > +(1− C0) < τ2 >=

∫ φ2

φ1

Q0(φ) dφ .

C̃1 is C1 with φ1 and φ2 interchanged.



Correlations and PDF

Following A. A. Starobinsky and J. Yokoyama, Phys. Rev. D
50, 6357 (1994).
In the leading approximations, all Green functions and joint
n-point probability distributions of the inflaton field can be
expressed through solutions of the same Fokker-Planck
equation with different initial conditions only. In particular, in
the case H ≈ H0 during inflation (for simplicity only), the
general two-point PDF for points lying outside each other’s
light cones in the stochastic approach is:

ρ2[φ1(r1, t1), φ2(r2, t2)] =

∫
Π[φ1(r1, t1)|φr (r1, tr )]Π[φ2(r2, t2)|φr (r2, tr )]ρ1(φr , tr ) dφr



where tr is the time in the past when both points were inside
one Hubble volume and Π[φ1(r, t1)|φ2(r, t2)] satisfies the
Fokker-Planck equation with respect to both its time
arguments with the initial condition

Π[φ1(r, t1)|φ2(r, t1)] = δ(φ1 − φ2)

Through the N-formalism - joint probability distributions of a
space-time metric after inflation.

For more details including formulas for higher moments in
single-field, slow-roll inflation, see V. Vennin and
A. A. Starobinsky, Eur. Phys. J. C 75, 413 (2015);
arXiv:1506.04732.



QFT of a self-interacting scalar field in the de

Sitter background

A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357
(1994).

The equilibrium (static) solution for the 1-point distribution:

ρeq(φ) = const e−2v , v =
4π2V (φ)

3H4
0

.

Arbitrary Green functions and n-point distributions can be
constructed, too, using solutions of the same Fokker-Planck
equation.



V (φ) = V0 +
1

2
m2φ2 +

1

4
λφ4 , 0 < λ� 1, H2

0 =
8πGV0

3
.

Three regimes:
1. Perturbative regime

√
λH2

0 � m2 � H2
0 .

< φ2 >=
3H4

0

8π2m2

(
1− 3β + 24β2 − 297β3...

)
, β =

3λH4
0

8π2m4
.

This result can be reproduced up to the β2 term using the
standard two-loop calculation, see A. Yu. Kamenshchik,
A. A. Starobinsky and T. Vardanyan, Eur. Phys. J C 82, 345
(2022); arXiv:2109.05625 for the most recent consideration
and the list of previous pioneer papers. Compare to the same
result in the one-loop (Gaussian) approximation:

< φ2
G >=

3H4
0

8π2m2

(
1− 3β + 18β2 + ...

)
.



2. Massless self-interacting regime |m2| �
√
λH2

0 .

< φ2 >=

√
3

2π2

Γ(0.75)

Γ(0.25)

H2
0√
λ
≈ 0.132

H2
0√
λ

< φ2
G >=

1

π
√

8

H2
0√
λ
≈ 0.113

H2
0√
λ

3. Symmetry breaking regime m2 < 0,
√
λH2

0 � |m2| � H2
0 .

< φ2 >=
|m2|
λ

+
3H4

0

16π2|m2|
+O

(
e−1/(4β)

)
The (modulus of) exponent is the action for the
Hawking-Moss instanton.
See also F. Finelli et al., Phys. Rev. D 82, 064020 (2010).



Is one (Grand) observer sufficient or required?
Is it sufficient in the sense that it can collect all information
about the real physical world? In classical Einstein gravity:
definitely not sufficient. Already the existence of two black
holes requires more than one observer to cover all space-time.
But in the standard quantum-field theoretical approach,
including its application to quantum gravity, the existence of
such ’observer’ is implicitly assumed by definition, in the
S-matrix approach, in particular. This leads to tracing over
quantum states not seen by this observer that, in turn, results
in the so called ’loss of information’ inside black holes. But this
tracing is made on paper only. In Nature, does it occur at all?
Alternative formulation of the question in terms if the
Carter-Penrose diagram: should the highest point of its
quantum analogue in full quantum field theory including
quantum gravity be a point (like in the Minkowski
space-time), or it can still be a horizontal line (like in de
Sitter)? In the latter case, many observers are required.



Conclusions

I Both classical and quantum inflationary cosmic hair do
exist, and scalar hair are even partly observable already.

I They are approximately time-independent in the
super-Hubble regime during and after inflation.

I Their Gaussian statistics is in the agreement with the
assumed mechanism of their creation from the adiabatic
vacuum state during inflation for a finite range of scales
covering all observable ones.

I Using the formalism of stochastic slow-roll inflation, the
behaviour of scalar hair can be quantitatively described in
the strongly non-linear regime.

I No quantum instability of a self-interacting scalar field in
the de Sitter background with adiabatic vacuum initial
conditions in the Poincare wedge.



WARM CONGRATULATIONS,

BEST WISHES

AND NEXT SUCCESSES TO BRANDON!
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