Probing supermassive compact objects with GRAVITY and the EHT

Frédéric Vincent¹

¹CNRS/Observatoire de Paris/LESIA

Electromagnetic probes of BH surroundings

- Star (test mass): clean, but far
- Accretion: close, but astrophysics-poluted

イロト イポト イヨト イヨト

Strong-field test at SgrA*/M87*

Tens of µas scale astrometry / imaging

 $\bullet \rightarrow \text{GRAVITY} \ / \ \text{EHT}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

GRAVITY: stars and flares EHT

Frédéric Vincent Probing SMBH with GRAVITY and EHT

Testing gravity?

Consistency test

- Using only Kerr
- Check that observables are consistent
- Would also certainly be consistent with non-Kerr spacetimes

Model-comparison test

- Fit data with Kerr and spacetime X
- Show that Kerr is statistically favored
- Big difficulty: degeneracy gravity/astrophysics

→ Ξ → < Ξ →</p>

REVOLUTION IN SCIENCE

NEW THEORY OF THE UNIVERSE.

NEWTONIAN IDEAS OVERTHROWN.

Yesterday afternoon in the rooms of the Royal Society, at a joint session of the Royal and Astronomical Societies, the results obtained by British observers of the total solar selipse of May 29 were discussed.

London Times, Nov 7th 1919

Eddington's test was a model-comparison one

くロト (過) (目) (日)

æ

2 EHT (and future) : inner accretion flow

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

GRAVITY Collab. 2018a, 2019b, 2020

Redshift / Precession (2018-2021)

- f-parameter fit: 0 for Newton, 1 for GR (1PN)
- $f_{\text{redshift}} = 1.04 \pm 0.05 \Rightarrow 20\sigma$ grav. redshift detection compatible results with Keck: Do,Hees,Ghez+19
- $f_{\text{precession}} = 0.997 \pm 0.144 \Rightarrow 7\sigma$ Sch. precession detection
- ullet ightarrow strong consistency tests of BH paradigm

GRAVITY Collab. 2018b

Orbital motion near horizon (2018)

- Location coincident with Sgr A*
- Compatible with Keplerian motion at *r* = 7*M* (compact!)
- Light curve + polarization ⇒ low inclination, B poloidal
- ullet ightarrow strong consistency test of BH paradigm

GRAVITY: stars and flares EHT

GRAVITY+ Phase A Science Case 2021

Future: GRAVITY+

- Go fainter, and closer
- Constrain the spin!
- Even further: quadrupole and no-hair?
- Can we go from consistency to model-comparison test?

・ロト ・ 同ト ・ ヨト ・ ヨト

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Event Horizon Telescope Collaboration 2022

- Very interesting for testing the plasma properties
- What about gravity?

・ 同 ト ・ ヨ ト ・ ヨ ト

Event Horizon Telescope Collaboration 2022

See talk by M. Wielgus tomorrow 11:00, Denisse room

ъ

 Scale emission ring to "shadow" (actually, critical curve) Compare to critical curve given *M*/*D* prior Advocate Kerr consistency test

• Can we trust the GRMHD prediction?

→ Ξ → < Ξ →</p>

A ►

 Scale emission ring to "shadow" (actually, critical curve) Compare to critical curve given *M*/*D* prior Advocate Kerr consistency test

• Can we trust the GRMHD prediction?

프 🖌 🛪 프 🕨

 Scale emission ring to "shadow" (actually, critical curve) Compare to critical curve given *M*/*D* prior Advocate Kerr consistency test

• Can we trust the GRMHD prediction?

★ E > < E >

э

 Scale emission ring to "shadow" (actually, critical curve) Compare to critical curve given *M*/*D* prior Advocate Kerr consistency test

• Can we trust the GRMHD prediction?

프 🖌 🛪 프 🕨

 Scale emission ring to "shadow" (actually, critical curve) Compare to critical curve given *M*/*D* prior Advocate Kerr consistency test

- Can we trust the GRMHD prediction?
 - $\bullet \ \rightarrow \text{Rather: plasma modeling consistency test}$

Shadow is astrophysics-dependent

Frédéric Vincent Probing SMBH with GRAVITY and EHT

・ロト ・回ト ・ヨト ・ヨト

æ

GRAVITY: stars and flares EHT

Direct detection of photon rings

- FT(primary + narrow ring): rings dominate at large B
- n = 2 ring \approx critical curve \rightarrow BH probe?
- Johnson+2020, Gralla+20 (Kerr consistency test), recent developments: Wielgus21, Paugnat+22, Vincent+22

200

Photon rings Fourier signature

- FT(primary + narrow ring): rings dominate at large B
- $n = 2 \text{ ring} \approx \text{critical curve} \rightarrow \text{BH probe}$?
- Johnson+2020, Gralla+20 (Kerr consistency test), recent developments: Wielgus21, Paugnat+22, Vincent+22

Photon rings Fourier signature

- FT(primary + narrow ring): rings dominate at large B
- $n = 2 \text{ ring} \approx \text{critical curve} \rightarrow \text{BH probe}$?
- Johnson+2020, Gralla+20 (Kerr consistency test), recent developments: Wielgus21, Paugnat+22, Vincent+22

Towards model-comparison test on photon rings?

Wielgus 2021

코 에 제 코 어

< 🗇 >

æ