eur PLANET 2024 Research Infrastructure

Compositional data handling 3rd part – Mars surface mineralogy

Beatrice Baschetti, IAPS - INAF and UNIPD

Mars' surface composition from orbit

- MARS CIDAL SUVYOR
- 2001 MARS ODYSSEY
- ADA JPL APL UA ASI

- Mars Global Surveyor (NASA, 1997-2006)
 - Thermal Emission Spectrometer (TES) → Thermal IR (~6-50 μm) point spectroscopy (hyperspectral).
 - Mars Odyssey (NASA, 2001-present)
 - Thermal Emission Imaging System (THEMIS)
 → Thermal IR (6.7-14.8 μm) multispectral imaging.
 - Mars Express (ESA, 2003-present):
 - Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) → Hyperspectral visible-infrared (0.4-5.0 µm) imaging.
- Mars Reconnaissance Orbiter (NASA, 2005-present):
 - Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) *Hyperspectral visible-infrared (0.4-4.0 μm) imaging.*

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)

Mineral maps (browse products): RGBs of spectral parameters

Example: mafic minerals browse

product

RED = Olivine

GREEN = Low-Ca pyroxenes

BLUE = High-Ca pyroxenes

Specific mineralogy can be assessed easily and quickly

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)

Mineral maps (browse products): RGBs of spectral parameters

Example: mafic minerals browse

More info about CRISM data products in the lecture Spectral data in the sedimentary deposits of Mars from last year

Lenes

https://www.planetarymapping.eu/404/fourth-day.html

assessed easily and guickly

- CRISM observations, also combined with TES, THEMIS, and OMEGA previous observations, indicate widespread and highly diverse mineral deposits on Mars.
- Currently identified minerals:

Primary mafic silicates

Most abundant minerals of Mars' crust

Primary mafic silicates from TES

Primary mafic silicates

Olivine

Usually detected when old materials are exposed from depth (e.g., by impacts) and in some ancient lavas.

eι

ANET 2024

Research Infrastructure

Iron Oxides

- Related to recent weathering and surface processes;
- Primary component of Martian surface soils and dust;
- Give Mars its distinctive reddish hue.

Dust Map (OMEGA)

Dust Map (OMEGA)

Aqueous minerals

indicative of **persistent water activity**:

- Phyllosilicates (e.g., clays),
- Sulfates,
- Carbonates,
- Chlorides (e.g., halite),
- Other hydrated silica (e.g., opal).

Phyllosilicates

Phyllosilicates are the most common aqueous mineral on Mars

Possible formation mechanisms on Mars generally include water alteration at relatively low temperature and pressure

- Surface formation (e.g., pedogenesis);
- Diagenesis;
- Hydrothermal;
- Low-grade metamorphic.

Phyllosilicates

Phyllosilicates are the most common aqueous mineral on Mars

Common occurrences:

- Fans and deltas deposits inside craters (former crater lakes);
- Layered deposits with AI-bearing clays overlying Fe/Mg clays;
- Intercrater plains sediments;
- Outcrops on crater walls and impact ejecta.

Carbonates

Formation mechanisms:

 Precipitation in aqueous environments at neutralto-alkaline conditions.

Occurrences:

 Specific locations like Nili Fossae and Tyrrhena Terra.

Missing carbonates?

Large scale deposits of carbonates should have formed on ancient Mars (CO₂ rich atmosphere + abundant water at the surface)

Why don't we observe them?

- ➢ No warm and wet early Mars for long enough;
- Other greenhouse gases than CO₂ on early Mars;
- Some deposits destroyed by subsequent acidic aqueous activity;
- Carbonate signature is spectrally obscured by other mineral phases but in very carbonate-rich areas.

Recently, carbonates were found mixed with clays in weathering profiles at Oxia Planum, Valles Marineris, Hellas (Bultel et al., 2019).

Jezero crater

Jezero crater is the only known location where clear orbital detection of carbonates + fluviolacustrine features are present

Sulfates could have formed in the following **settings**:

- Alteration of the crust through acidic groundwater (subsurface) or rain/frost (surface);
- Evaporation of standing water bodies/brines.

Geology and Planetary

Mapping Winter School

30 Jan - 3 Feb 2023

Common sulfate occurrences:

Valles Marineris, chaotic regions, Meridiani Planum and Arabia Terra, dunes surrounding the northern polar cap (gypsum).

Timeline of large-scale compositional units

Different aqueous mineralogy means:

- Different environmental and chemical conditions;
- Different epochs (although with some overlapping).

Geology & Planetary Mapping Winter School

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.

References

Ehlmann, B. L. and Edwards, C. S., "Mineralogy of the Martian Surface", Annual Review of Earth and Planetary Sciences, vol. 42, no. 1, pp. 291–315, 2014. doi:10.1146/annurev-earth-060313-055024.

Murchie, S. L., "A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter", Journal of Geophysical Research (Planets), vol. 114, no. E2, 2009. doi:10.1029/2009JE003342.

Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., "A Global View of Martian Surface Compositions from MGS-TES", Science, vol. 287, no. 5458, pp. 1626–1630, 2000. doi:10.1126/science.287.5458.1626.

Mustard, J. F., "Olivine and Pyroxene Diversity in the Crust of Mars", Science, vol. 307, no. 5715, pp. 1594–1597, 2005. doi:10.1126/science.1109098.

Ehlmann, B. L., "Orbital Identification of Carbonate-Bearing Rocks on Mars", Science, vol. 322, no. 5909, p. 1828, 2008. doi:10.1126/science.1164759.

Bultel, B., Viennet, J.-C., Poulet, F., Carter, J., and Werner, S. C., "Detection of Carbonates in Martian Weathering Profiles", Journal of Geophysical Research (Planets), vol. 124, no. 4, pp. 989–1007, 2019. doi:10.1029/2018JE005845.

Viviano-Beck, C. E., "Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars", Journal of Geophysical Research (Planets), vol. 119, no. 6, pp. 1403–1431, 2014. doi:10.1002/2014JE004627.

Minerals Identified through CRISM Analysis - The MICA Files: http://crism.jhuapl.edu/data/mica/

