

GEOLOGY, LANDING SITE SELECTION AND ROVER TRAVERSES IN COPERNICUS CRATER (MOON).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.

WORKFLOW

- 1. Preliminary Study of the Area
- 2. Geologic Mapping
- 3. Scientific Stop Selection
- 4. Landing Ellispe Selection
- 5. Traverse Selection
- 6. Analysis

1- PRELIMINARY STUDY

From regional to local scale:

Geomorphological Observations

1- PRELIMINARY STUDY

Regional Spectral observations

 Search or enter lat.lon Filter layers. reflectance data acquired by the JAXA SELENE/Kaguya mission ranging from -50° to 50° latitude at 512 ppd. For more information, refer analysis of the inner rings of lunar impact basins Planetary and Space Science, vol. 165, p. 230-Dynamic layers are rendered on-the-fly by ACT using user-adjustable inputs. More Info ☑ Olivine Abundance (wt%) Approx. Value at Curson 1.078 wt% ♀ Flicker Render Options Mask Data Outside Range Kaguya Multiband Imager

Olivine Content

1- PRELIMINARY STUDY

Plagioclase Content

Iron Content

2- GEOLOGIC MAPPING

Tusberti et Al., 2023

3- SCIENTIFIC STOP SELECTION

Do we have any scientific constrain?

ESA Strategy for Science at the Moon

Topic	Major Research Topics	Campaign 1: Samples	Campaign 2: polar volatiles	Campaign 3: Geophysics	Campaign 4: plasma, exosphere, dust	Campaign 5: In situ geoscience	Investigation 7: Physics and astronomy
Bombardment	Cataclysm? Inner solar system chronology – all planets?						
Structure from core to	volcanic evolution asymmetric between the nearside and farside hemispheres?						
Rock diversity and distribution	Crust homogeneity & evolution (LMO, KREEP etc.)?						
Polar volatiles (ice)	Origins? Distribution? Abundance? Processes? Resources?						
Volcanism	How recent? Role of volatiles? Thermal evolution? Interior diversity? Resources?			×			
Impact processes	The Moon is a natural laboratory for impact events at all scales. The Moon and Earth were subjected to the same impact environment.						
Regolith	Formation and weathering processes? History of the Sun and Solar System? Resources?						
Atmosphere and dust	Exosphere formation and evolution? Dust levitation and transport?						
Earth-Moon formation	When? How? Subsequent evolution and processes on Moon & Earth?						

3- SCIENTIFIC STOP SELECTION

TABLE 3.1 Primary Science Goals of Lunar Science Concepts and Links to Overarching Themes

Overarching Themes

	Science Goals of Lunar Science Concepts and Lini	2 2505		AC		N	Science Concepts	Science Goals	Early Earth-Moon System	Terrestrial Planet Differentiation and Evolution	Solar System Impa Record	Lunar Environme	Immlications for I
			Overarching Themes				3. Key planetary	3a. Determine the extent and composition of the		X			
Science Concepts	Science Goals	Early Earth-Moon System	Ferrestrial Planet Differentiation and Evolution	Solar System Impac Record	Lunar Environment	implications for Life	processes are manifested in the diversity of lunar crustal rocks.	primary feldspathic crust, KREEP layer, and other products of planetary differentiation. 3b. Inventory the variety, age, distribution, and origin of lunar rock types. 3c. Determine the composition of the lower crust and bulk Moon.	x x	x x		x	
The bombardment	la. Test the cataclysm hypothesis by determining the	X		X		x		3d. Quantify the local and regional complexity of the		X	X		
history of the inner solar system is uniquely revealed on the Moon.	spacing in time of the creation of lunar basins. 1b. Anchor the early Earth-Moon impact flux curve by determining the age of the oldest lunar basin (South Pole-Aitken Basin).	x	X	x		x		current lunar crust. 3e. Determine the vertical extent and structure of the megaregolith.			x	x	x
	Establish a precise absolute chronology. Id. Assess the recent impact flux. le. Study the role of secondary impact craters on crater counts.	х	X	X X X	x	X	The lunar poles are special environments that may bear witness to the volatile flux over	4a. Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar				x	x
The structure and composition of the lunar interior	 Determine the thickness of the lunar crust (upper and lower) and characterize its lateral variability on regional and global scales. 		X	X			the latter part of solar system history.	polar regions. 4b. Determine the source(s) for lunar polar volatiles. 4c. Understand the transport, retention, alteration,			x	X X	
provide fundamental information on the evolution of a	2b. Characterize the chemical/physical stratification in the mantle, particularly the nature of the putative 500-km discontinuity and the composition of the lower		x				05 (100) - 050	and loss processes that operate on volatile materials at permanently shaded lunar regions.					
differentiated planetary body.	mantle. 2c. Determine the size, composition, and state (solid/	x	x					 Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. 				X	
	liquid) of the core of the Moon. 2d. Characterize the thermal state of the interior and elucidate the workings of the planetary heat engine.	X	x					Determine what the cold polar regolith reveals about the ancient solar environment.				X	

National Research Council - USA

3- SCIENTIFIC STOP SELECTION

- 1. Bombardment history of the inner Solar System. (NRC Goal 1)
- 2. Structure and composition of the lunar interior. (NRC Goal 2)
- 3. Diversity of lunar crustal rocks (NRC Goal 3)
- 4. Lunar volcanism (NRC Goal 5)
- 5. Impact process (NRC Goal 6)
- 6. Regolith and weathering processes(NRC Goal 7)
- 7. Volatiles
- 8. IRSU

SCIENTIFIC GOALS
Of the selected targets

4- LANDING ELLIPSES SELECTION

Do we have any engineering constrain?

- Latitude/Longitude
- Dimension and Orientations
- Slope
- Boulders/craters abundances
- Dust Coverage
- Thermal Inertia
- Albedo
- Radar Reflectivity

- They vary from mission to mission
- They mainly depend on the «Entry Descend and Landing parameters» (EDL)

4- LANDING ELLIPSES SELECTION

3 concentric and Conservative Potential landing Ellipses

4- BOULDER COUNTING

1.9 x 10⁻⁴ Boulders per Square meter

4- CRATER COUNTING

53 Craters per Square Kilometer

4- SLOPE ANALYSIS

1.31% Forbidden Areas

5- TRAVERSES SELECTION

Do we have any engineering constrain?

- Maximum path lenght = 32km
- Ground Clearence = 30cm
- Maximum Steepness = 16°

- Subdivide the Targets in subgroups and try to connect them
- Being conservative
- Avoid Obstacles
- Draw a shorter version of the path for each traverses (B-Plan)

5- TRAVERSES SELECTION

eur

6- TRAVERSE ANALYSIS

Kind of analysis extimation

Target (T) activities	Time (Earth hours)	References			
Panoramic image using 3D imager	8	Potts et al., 2015			
Position rover for in situ target	0.5	Potts et al., 2015			
GPR analysis	On while traversing	Shearer & Tahu, 2010			
Position arm-mounted APXS	0.5	Potts et al., 2015			
APXS analysis	3.0	Arvidson & May, 2010			
Position GRS	0.5	Potts et al., 2015			
GRS analysis	1.0	Wieczorek et al., 2015			
Position microscope camera (LRAC)	0.5	Potts et al., 2015			
Microscope Camera (LRAC)	1.0	Arvidson & May, 2010			
Surface imager (MSL MastCam)	0.5	Shearer & Tahu, 2010			
Sample collection	3.0	Potts et al., 2015			
Sample Transfer to bad and storage	1.0	Potts et al., 2015			

Time exitmation

Traverse	1-analysis timing	3-analysis timing			
	(Earth days)	(Earth days)			
Long Traverse 1	8.5	18.5			
Short Traverse 1	6.5	15			
Long Traverse 2	10	22			
Short Traverse 2	6	12.5			
Long Traverse 3	7	15			
Short Traverse 3	7	16			

6- TRAVERSE ANALYSIS

Laser scanner

Instrument	Interior Structure- Tectonism	Primordial crust	Volcanism	Cratering Model Ages	Impact processes	Subsurface structures	Volatiles	Regolith and ISRU
Panoramic and Context Cameras	•	•	•		•	•		
Microscope camera		·	•	•	•			•
VNIR Spectrometer (0.3-0.9 µm)			•	•	•			•
NIR-SWIR Spectrometer (0.7-3.5 μm)		·	•	•	•		•	•
TIR spectrometer (7.0-14.0 μm)		•	•	•	•			•
XRF		•	•	•	•			•
XRPD		•	•	•	•			
Gamma Ray Spectrometer		·	•		•			
Neutron Spectrometer							•	•
LIBS		•	•	•	•		•	·
α-Spectrometer (dust, Radon, outgassing)							•	•
Magnetometer	•				•	•		
GPR	•	•	•		•	•	•	•
Seismometer	•				•	•		•
Radiation dosimeter		•	•					•
Heat flow probe	•						•	
Laser Range finder	•		•					

Massironi & Ferrari 2019

