IVOA Metadata for high energy astrophysics

WP4 ESCAPE preparatory meeting

How does high energy metadata connects with IVOA standard data models? <u>https://indico.in2p3.fr/event/24652/</u> Friday 25 Jun 2021, 09:30 \rightarrow 17:30 Europe/Paris LUTH - Observatoire de Paris, Meudon

Participants:

- Catherine Boisson
- François Bonnarel
- Bruno Khélifi
- Mireille Louys
- Mathieu Servillat

Joined via Zoom at 15h:

- Matthias Fuessling
- Gareth Hughes

1/ Metadata for Cherenkov astronomy

Bruno:

- Data format
 - inspired from Fermi LAT and adapted
- Fixed observation duration (25-30 min runs for H.E.S.S.)
- Data Levels
 - DL0 : camera data
 - DL1 : calibrated signals from cameras
 - DL2->DL3 : reconstructions and cuts
 - different options (reco method, applied cuts)
 - 1 file with the detected events
 - 1 set of files for the instrument response functions(IRF) corresponding to the observation

Archive – data level

- File with DL3 in FITS format
 - EVENTS frame (time, sky position, energy)
 - Additional frames
 - TELARRAY: list of telescopes (e.g. 4 small H.E.S.S. telescopes)
 - GTI: Good Time Intervals (may be just one line, start and stop)
 - POINTING: time stamp with pointing position in different coordinate systems
 - Some metadata
 - obs_id (runid)
 - telescope type, list
 - start, stop times
 - mean pointing
 - ...
- IRF files
 - From simulations:
 - aeff: effective area
 - edisp: energy dispersion
 - psf: point spread function (after reconstruction)
 - From observations:
 - bkg : estimation of the hadronic background noise
- Index of observations :
 - Collections are stored on disk for gammapy ("DataStore")
 - obs-index et hdu-index tables
 - Contain characteristics for requests and data selection

- Remarks :
 - If some data are downloaded from an archive, obs-index and hdu-index should be specifically generated for this data subset, and all fiels packed together (e.g. tar)
 - Separate datasets in distinct directories
 - Should we provide a way to combine several obs-index and hdu-index?
- Total DL3 Archive DL3
 - 12 GB for H.E.S.S. (but for 1 type of analysis)
 - x10 for CTA
- DL3 -> DL4 -> DL5/6
 - gammapy (official tool for CTA)
 - provides a specific workflow
 - DL4-DL5 formats are not yet defined
 - DL6: catalogs, but scope is not clear (per project catalogs, full catalogs with releases...)

Data workflow and package structure

- Notebook example:
 - Spectral analysis of the Crab with gammapy
 - 1D_systematics_Crab_he
 - See also <u>https://docs.gammapy.org/0.18.2/tutorials/index.html</u>

2/ VO standards

- Relevant standards :
 - MOC
 - HEALPix Multi-Order Coverage map
 - https://www.ivoa.net/documents/MOC/
 - ObsCore
 - Observation Data Model Core Components
 - <u>https://www.ivoa.net/documents/ObsCore/</u>
 - DataLink
 - Linking of data discovery metadata to access to the data itself, further detailed metadata, related resources, and to services that perform operations on the data
 - <u>https://www.ivoa.net/documents/DataLink/</u>
 - SODA
 - Server-side Operations for Data Access
 - https://www.ivoa.net/documents/SODA/
 - TAP
 - Table Access Protocol
 - <u>https://www.ivoa.net/documents/TAP/</u>
 - ADQL
 - Astronomical Data Query Language
 - <u>https://www.ivoa.net/documents/ADQL/</u>
- Example at CADC with Aladin
 - Cone search on the image
 - List of ObsCore records in the selected region
 - access_url = Datalink, with several options proposed (via a 'drop down' list)
 - preview
 - fits
 - cutout service
- ASKAP with Aladin
 - MOC = coverage on the sky
 - Cone Search -> ObsCore table
 - access = Datalink, including a cutout service SODA
 - SODA
 - small image overlapped on the sky map, with the requested size and binning
 - useful if main data file is too large (100s of MB)
- Radio Visibilities with TAP Handle
 - TAP Request (using ADQL)
 - Datalink
 - There may be similarities in the handling of radio visibilities and high energy IRF

3/ VO for Cherenkov data

Data Access and ObsCore fields content

- access_url
 - Is there an interest in having juste the event file (no IRF)
 - FITS is more interoperable than tar
 - but no science or preview can be easily done with the event list of one observation (except for the Crab maybe...)
 - Concatenate in 1 FITS file only ?
 - FITS is more interoperable than tar
 - may not be better anyway...
 - GTI (Good Time Intervals)
 - There may be several IRF for one observation: one per GTI
 - by default, a tar file with events + IRF
 - structure of directories in tar file (to respect gammapy DataStore)
 - add obs-index and hdu-index for the files accessed
 - Several options shown as a Datalink
 - TAR of all files
 - Each file
 - Service to show preview, processing capabilities...
- content_type
 - application/x-fits+tar+gz (to be checked)
- dataproduct_type
 - "event": event counting, typically (ObsCore definition)
 - How can we indicate the presence of IRFs ?
 - Use dataproduct_subtype ?
 - Datalink for access_url
- calib_level
 - between 2 and 3 (see ObsCore definition)
 - EVENTS: instrumental effects are not completely removed, but data is calibrated
 - EVENTS+IRF: instrumental effects removed, but after some processing
 - DL3 -> calib_level = 2
 - DL5 -> calib_level = 3
- obs_collection
 - could distinguish between different types of analysis
 - ex : hess_dl3_dr1
- obs_publisher_did
 - example for hess_dl3_dr1:
 - <ResourceID>
 - <AuthorityID>padc</AuthorityID>
 - <ResourceKey>hess_dl3_dr1/23523</ResourceKey>
 - </ResourceID>
 - ivo://padc/hess_dl3_dr1/23523

- s_ra, s_dec
 - coordinate of the mean pointing (not always the target)
- s_fov
 - circle with the mean radius of the field of view ?
 - compute the distance of the most external event ?
 - sensitivity map contours ?

Use cases for data access

- Download DL3 data
 - All (experts would have all the data on disk, disk space is not a constraint)
 - Subset
 - in all cases, include obs-index and hdu-index to make it usable with gammapy
- Preview the data
 - Show each event ? no real interest
 - Preview of DL5 data corresponding to DL3 data
 - pre-generated, with specific options (reco method, cuts)
 - SODA: request a map with the relevant options
- Download DL5 data (reverse of the previous use case)
 - direct access to image, spectrum, lightcurve, SED...
 - datalink to #progenitor : DL3 with IRF in FITS.tar.gz
- See what is prepared for SVOM (L. Michel)
- See what X-ray observatories do
- See what Radio observatories do

Possible ObsCore extensions for DL4/5 data

- t_support (T-MOC format ?)
- snr
- binning_strategy
- model_fit_name
- model_fit_url
- model_fit_minimiser_method
- ...

MOC and HiPS

• Such products are relevant for a given collection

Prototype: proposed evolutions

- HESS_DR via ObsTAP
 - <u>https://hess-dr.obspm.fr/</u>
- Update ObsCore metadata
- Should provide a tar file with all IRF
- Should include obs-index and hdu-index for the selected obs

- The tar file would thus be directly readable by gammapy
- Datalink
 - Complete DL3+IRF (default)
 - DL5 preview for this observation
 - Provenance (last_step_provenance record? ProvSAP?)
- Additional DL5 may be found in another ObsTAP service (or another collection on a service)
 - relevant DL5 are generally a combination of several DL3 (wobble, increased exposure time, several nights)
 - thus the identifiers are different (but mapping DL5 -> DL3 is kept)
 - Service to locate DL5 proposed via the Datalink service
 - or reverse system : find DL3 from DL5 -> table for mapping