

cherenkov telescope array

CTA Data Model First rough draft of a data model for DL3 (and some DL5)

data products

Karl KOSACK CTAO, CEA Paris-Saclay Astrophysics Department Matthias Füßling CTAO

Important points for data model (Cta

Pointed instrument: ≈8° FOV arrays *> many telescopes, multiple sub-arrays possible* High-Energy Astrophysics → single photon counting Ground-based → Can't point everywhere, Earth turns Atmosphere *part of* telescope → **impulse response varies** air density and aerosols zenith angle (atmosphere depth) azimuth angle (B-field) Night-Sky-Background light (both stars and man-made) • short duty cycle +

deep integration times *> many observations combined to analyze a source*

CTA Low-Level Data

Happens in CTA Observatory Data Center

Karl Kosack

Science-Ready data Products further processed with Science Tools (GammaPy)

Science Analysis: DL3-DL5 Happens at CTA data centers (automatic) + by users on user's laptops or e.g. ESCAPE science platform

DL3 Science-Ready Retrieve Event Lists

and IRFs that cover region of interest

obs_id = 84753

Search	for	data
JUUIUI		MULU

covering region of interest in space, time, maybe other parameters

VO tools?

	even	t_id	Time	Energy	RA	Dec	
	123	51	55933.30	0.03	53.6	-29.2	
	100	50	-ops 'i	d = 9958	4 52 2	20.3	
ve	nt_id	Ti	me Er	nergy R	A I	Dec	
12	351	559	33.30 (0.03 53	3.6 -	29.2	
12356 55922 21 01 obs id = 100202							
12	970	550	event_id	l Time	Energy	RA	Dec
12	378	559	event_id 12351	Time 55933.30	Energy 0.03	RA 53.6	Dec -29.2
12 12	378 389	559 559	event_id 12351 12356	Time 55933.30 55933.31	Energy 0.03 0.1	RA 53.6 53.2	Dec -29.2 -29.3
12 12	378 389	559 559	event_id 12351 12356 12378	Time 55933.30 55933.31 55933.36	Energy 0.03 0.1	FA 53.6 53.2	Dec -29.2 -29.3
12 12	378 389	559 559	event_id 12351 12356 12378	Time 55933.30 55933.31 55933.36	Energy 0.03 0.1 12.0	RA 53.6 53.2 53.8	Dec -29.2 -29.3 -29.5

For Context: Metadata & Low-level Data Model

CTA Data Model

Data Product

<<MetaData>>

<<MetaData>>

For Context: Metadata & Low-level Data Model

CTA Data Model

arl Kosack

CTA Data Model

What are Science-Ready Data? (DL3)

Gamma-like Event Lists (≈ a photon list)

- Particle parameters reconstructed from airshower measurements
 - time of event arrival
 - reconstructed position on sky + ground
 - reconstructed energy
 - reconstructed shower h_{max} or X_{max} (optional)
 - a background class (how likely it is a gamma)
 - a reconstruction class (how well reconstructed)
- True particle parameters (if from simulations)

Instrument Monitoring Tables

Good-Time Intervals (pre-made or user)

CTA Data Model

Instrument Response Function (IRF): & Background Model: B

▶ IRF (R) : Probability distributions that relate **Reconstructed** (instrument) to **True** (physics) parameters

•
$$N_{\text{predicted}} = F_{\text{true}} \circledast \hat{\mathbf{R}} + B_{\text{predicted}}$$

Assumptions:

- time-invariant per "good time interval"
- pointing is much better than PSF (no bias)
- we can factor **R** as

 $\hat{\mathbf{R}} = A_{\text{eff}}(E) \cdot \hat{E}_{\text{mig}}(E, E') \cdot \text{PSF}(p, p')$

effective collection area

Energy Migration Matrix (resolution & bias)

Point-Spread Function Karl Kosack

DL5: Science Quick-Look Products Flux

Measured Fluxes and/or Flux Models

<<Model>>

Compound Model

CTA Data Model

<<Model>>

<<Model>>

Temporal Model

<<Model>>

Spectral Model

<<Model>>

Background Model

Spatial Model

<<FluxDataCube>>

Light-Curves Sky Maps Spectra

> Need some VO metadata to be discoverable and interoperable with all observatories!

DPPS

extra info

Karl Kosack

UML

Relationship Type		Symbo
A is associated with B	Α	
A is associated with B (unidirectionally)	Α]
A is composed of B	Α	•
A aggregates B	Α	⇔
A depends on B	Α	
A inherits from B	Α	

Relationship

Exactly One-to-One

Zero or 1 to Many

Many-to-Many

One-to-Many with explicit link attributes

CTA Data Model

Multiplicity	Symbol		
Exactly One	1		
Zero or One	01		
Many	*		
Zero or More	0*		
One or More	1*		

Karl Kosack