
Christoph Deil, MPIK, Heidelberg 
for the Gammapy developers

Gammapy

October 2, 2017, Ateliér CTA, Observatoire de Meudon 1

Overview

• What is Gammapy?
• Context for Gammapy (Python, Numpy, Astropy, …)
• Gammapy features and recent developments
• Gammapy next steps
• Getting started with Gammapy
• Concluding remarks

2

What is Gammapy?

Introduction, idea, philosophy, status

3

What is Gammapy?
Gammapy – A Python package for g-ray astronomy Axel Donath

Figure 1: Gammapy is a Python package for high-level g-ray data analysis. Using event lists, exposures
and point spread functions as input you can use it to generate science results such as images, spectra, light
curves or source catalogs. So far it has been used to simulate and analyse H.E.S.S., CTA and Fermi-LAT
data, hopefully it will also be applied to e.g. VERITAS, MAGIC or HAWC data in the future.

1. Introduction

1.1 What is Gammapy ?

Gammapy is an open-source Python package for g-ray astronomy. Originally Gammapy started
as a place to share morphology fitting Python scripts for the work on the H.E.S.S. Galactic plane
survey [1] two years ago. Since that time Gammapy has grown steadily: functionality as well
as development infrastructure has been improved and it has been accepted as an in-development
Astropy-affiliated package. Now, in this proceeding, we would like to introduce Gammapy to the
community and present our vision of Gammapy as a future community-developed, general purpose
analysis toolbox for g-ray astronomers.

The general concept of Gammapy is illustrated in Figure 1. Based on pre-processed input
data (e.g. event lists) provided by instruments such as H.E.S.S., Fermi or CTA, Gammapy offers
the high-level analysis tools to generate science results such as images, spectra, light curves and
source catalogs. By using common data structures and restriction to binned analysis techniques, all
input data can be treated the same way, independent of the instrument. Research already making
use of Gammapy is presented in [1, 2, 3].

1.2 How to get Gammapy

Recently Gammapy version 0.3 was released. It is available via the Python package index 1 or
using package manager tools like pip and conda. Gammapy works on Linux and Mac (Windows
most likely as well, but this has not been tested yet) and is compatible with Python 2.7 and Python

1https://pypi.python.org/pypi/gammapy/

2

4

What is Gammapy?

Gamma-ray
Telescopes

 
Fermi-LAT 

HAWC
H.E.S.S. 
MAGIC  

VERITAS 
CTA
…

Data  
(“Level 3” in CTA)

Events
IRFs 

Background  
Livetime
Pointing 

…

Science tools

Fermi ST
pointlike  
Fermipy 

Gammapy 
ctools
Naima  
3ML 
…

Data
(“Level 4 & 5” in CTA)

Images 
Spectra  

Light-curves  
Fit results  
Catalogs  

… simulate

Astronomer

data 
release

FIGURE 1. The purpose of the gamma-astro-data-formats e↵ort is to encourage collaboration between high-level gamma-ray
data producers, science tool developers, and data analysts. The goal is to develop common data formats to avoid duplication of
e↵orts and confusion by astronomers working with multi-mission gamma-ray data or multiple analysis tools.

Introduction

The Flexible Image Transport System (FITS) format was created around 1980 [1] by optical astronomers. In the
1990s, the HEASARC FITS Working Group, also known as the OGIP (O�ce of Guest Investigator Programs) FITS
Working Group, produced documents and recommendations concerning the storage of X-ray (and partly gamma-ray
space telescope) data in FITS.1 Several of these recommendations have subsequently been incorporated into the FITS
standard, the latest version is FITS 3.0 from 2010 [2].

Today, very-high energy (VHE, energy > 50 GeV) gamma-ray astronomy is finding itself in a similar situation
like X-ray astronomy in the 1990s (illustrated in Figure 1). The existing ground-based imaging atmospheric Cherenkov
telescopes (IACTs) like e.g. H.E.S.S., MAGIC and VERITAS, have been operating independently for the past decade,
using proprietary data formats and codes. Data from each IACT is stored in ROOT files containing serialised C++
objects and can only be read with the private software. The Cherenkov Telescope Array (CTA), the next generation
IACT instrument, will be operated as an an open observatory, meaning that data and analysis software will be public
to all astronomers. Current IACTs have started to “export” their data and instrument response functions (IRFs) to
FITS, partly as a prototyping e↵ort for CTA, but also to take advantage of the open-source science tool codes for
gamma-ray astronomy (Gammapy [3], ctools [4], pointlike [5], Fermi ScienceTools2, Fermipy3, 3ML [6], Naima [7],
. . .) and to have an archival and common data data format that allows joint analysis with other astronommical multi-
wavelength datasets. For science data products, the term “data level 3” (DL3) is used for event lists, IRFs and auxiliary
data for analysis and provenance, “data level 4” (DL4) for higher-level science data products like images, spectra and
lightcurves, and “data level 5” (DL5) for source catalogs (see Figure 1).

This situation (many gamma-ray data producers and science tools) has prompted us to start in early 2016 the
gamma-astro-data-formats e↵ort – an attempt to create an open forum and process to create gamma-ray data
models and formats. In some cases we are using or extending the existing formats (mainly FITS and OGIP recom-
mendations), in some cases we are creating new formats that more directly reflect our use cases. The goal is to improve
collaboration between people working on this topic and to produce data format specifications to help data producers,
tool developers, and astronomers working with high-level gamma-ray data.

1
https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/ofwg_intro.html

2
http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/

3
http://fermipy.readthedocs.io/

5

What is Gammapy?

GAMMAPY APPROACH

CIAO's modeling and fitting package

10

6

What is Gammapy?

7

Gammapy philosophy

“If	I	have	seen	further,	it	is	by	standing	
on	the	shoulders	of	giants.”	

—	Issac	Newton

8

Gammapy philosophy

“If	I	have	seen	further,	it	is	by	importing	
from	the	code	of	giants.”	

—	Gammapy	developer

9

Gammapy philosophy

• Python first
• High-level nice language

• Build on existing scientific Python and astronomy packages
• Concentrate on gamma-ray astronomy

• Interoperable and flexible
• Event and pixel data in numpy arrays

• Collaborate
• Development on Github
• An Astropy-affiliated package
• Contribute to related packages (healpix, regions, …)

10

Gammapy status

• Gammapy development started in 2013, it is under heavy
development, not a complete and finished science tool
package

• Note that the same is true for the CTA data model and IRFs
that are the Gammapy input, event classes and types as well
as IRFs and background models are very preliminary

• With Gammapy, you can currently read event data and IRFs
from HESS, MAGIC, CTA, do a “classical” VHE data analysis (2-
dim images, 1-dim spectra, lightcurve)

• A first working Sherpa-based prototype for 3D analysis exists,
but probably should be re-written (see comments later)

• More info about available features later and tomorrow in the
tutorials

11

Context for Gammapy

Origins of Python, Numpy, Astropy

12

Python in astronomy (science tools)

Over	the	past	decade,	Python	has	become	the	favourite	language 
for	astronomers	(but	also	for	many	other	domains,	not	discussed	here)

13
Thanks to Juan Nunez-Iglesias,

Thomas P. Robitaille, and Chris Beaumont.

Mentions of Software in
Astronomy Publications:

Compiled from NASA ADS (code).

Python in astronomy (pipelines)

Over	the	past	decade,	Python	has	also	become	the 
favourite	language	for	astronomy	data	pipelines

14

But why Python?

• Python was created by Guido
van Rossum ~ 1990.

• “My initial goal for Python was
to serve as a second language
for people who were C or C++
programmers, but who had
work where writing a C
program was just not effective.”

• "Bridge the gap between the
shell and C.”

But Why Python?

Python is a “teaching
language”

. . . created to “bridge the gap
between the shell and C”

“never intended. . . to be the
primary language for
programmers.”

Guido Van Rossum The Making of Python

15

The genesis of scientific Python

• Numpy and Scipy were created  
by Travis Oliphant and others 
in ~ 2006

• (based on the earlier Numeric and  
Numarray packages from the 90s)

• “Prior to Python, I used Perl (for a year) and then Matlab and shell
scripts & Fortran & C/C++ libraries. When I discovered Python, I really
liked the language... But, it was very nascent and lacked a lot of
libraries. I felt like I could add value to the world by connecting low-
level libraries to high-level usage in Python. “ 
— Travis Oliphant

The Genesis of Scientific Python

“Prior to Python, I used Perl (for a year) and then
Matlab and shell scripts & Fortran & C/C++ libraries.
When I discovered Python, I really liked the
language... But, it was very nascent and lacked a lot of
libraries. I felt like I could add value to the world by
connecting low-level libraries to high-level usage in
Python.”

- Travis Oliphant
 creator of NumPy & SciPy
 via email

16

Python enters astronomy

• Python became the #1 language in astronomy in
the past few years, but it entered astronomy
over a decade ago.

• StScI / Hubble were an early adopter and
contributor, let by Perry Greenfield

• PyData 2015 talk: "How Python Found its way
Into Astronomy” (https://youtu.be/uz53IV1V_Xo)

• Python in Astronomy 2015 talk: “The
Development and Future of Python at
STScI” (https://youtu.be/R_UcjjUC8bE)

• “Python is a language that is very powerful for
developers, but is also accessible to
Astronomers. Getting those two classes of people
using the same tools, I think, provides a huge
benefit that’s not always noticed or mentioned. “  
— Perry Greenfield

Python Enters Science:

Python in Astronomy 2015

“Python is a language that is very powerful for
developers, but is also accessible to Astronomers.
Getting those two classes of people using the same
tools, I think, provides a huge benefit that’s not always
noticed or mentioned.”

- Perry Greenfield
Space Telescope

Science Institute
 PyAstro 2015

17

https://youtu.be/uz53IV1V_Xo
https://youtu.be/R_UcjjUC8bE

The genesis of Astropy

June	9th	2011	on	the	Astropy	mailing	list	…

18

The situation before Astropy

Astronomical	coordinates,	FITS,	WCS,	…	 
—>	too	many	packages,	many	ways	to	do	the	same	thing 
—>	often	quality	not	very	high	and	long-term	support	uncertain

19

Astropy project

Basic	idea:	Astropy	core	package	with	functionality	that	many	astronomers	need	(with	only	one	
required	dependency:	Numpy),	plus	an	ecosystem	of	affiliated	packages	that	build	on	the	core	package.

20

Astropy project

• Overall very successful in it’s first
six years

• Set up in a good way technically:
Github, code review, docs, tests, …

• Set up in a good way from a project
management perspective:
coordination commitee, other roles,
meetings, …

• Some institutional support,
especially from StScI, but getting
direct funding remains a challenge
(2016arXiv161003159M).

• Funding for “ infrastructure” or “base” projects that
aren’t project-specific has always been a problem.
E.g. Numpy only managed in 2017 to get it’s first
direct funding (700k$).

21

http://adsabs.harvard.edu/abs/2016arXiv161003159M

Astropy core package

Documentation	in	Sphinx,	some	Jupyter	tutorial	notebooks

22

Astropy development

23

Astropy development

24

Astropy development

The	code	review	discussion	for	a	pull	request	(in	an	extreme,	too	large	case, 
where	the	pull	request	should	probably	have	been	split	in	multiple	parts).

25

Astropy tests

def!test_constellations():

!!!!#"the"actual"test"for"accuracy"is"in"test_funcs"2"this"is"just"meant"to"make
!!!!#"sure"we"get"sensible"answers

!!!!sc!=!SkyCoord(135*u.deg,!65*u.deg)
!!!!assert!sc.get_constellation()!==!'Ursa!Major'
!!!!assert!sc.get_constellation(short_name=True)!==!'UMa'

!!!!scs!=!SkyCoord([135]*2*u.deg,![65]*2*u.deg)
!!!!npt.assert_equal(scs.get_constellation(),!['Ursa!Major']*2)
!!!!npt.assert_equal(scs.get_constellation(short_name=True),!['UMa']*2)

(x 10,000)

Automated	tests	and	continuous	integration	ensure	that	additions 
work	and	changes	don’t	break	anything.

26

(x	10,000)

Astropy affiliated packages

• Roughly two categories:
• In-development functionality for Astropy core package 

Examples: wcsaxes, regions, healpix, reproject
• Specialised packages that aren’t needed by most

astronomers. Examples:
• PINT - pulsar timing
• Naima - non thermal SED modeling
• sncosmo - supernova light curve modeling
• astroplan - astronomical observation planning
• … many more …

• Main idea: collaborate, avoid duplication, increase quality, …
• More infos on the webpage and in a second Astropy paper that is

currently being written (first one was 2013 about Astropy v0.2).

27

What is Gammapy?

• Gammapy started ~ 2013 by
people in H.E.S.S., now used for
Fermi-LAT, H.E.S.S., MAGIC, CTA

• Gammapy is an Astropy-affiliated
package for gamma-ray
astronomy

• Gammapy is a prototype for the
CTA science tools

GAMMAPY APPROACH

CIAO's modeling and fitting package

10

28

Gammapy development

Gammapy	is	set	up	exactly	the	same	way	as	Astropy 
(using	the	standard	open	source	and	Python	tools)

29

Other related packages

30

Data in Gammapy - Numpy arrays

• One key point I would like to make is
that event and pixel data in Gammapy
is stored in Numpy arrays

• Algorithms are implemented by calling
into existing Numpy, Scipy & Astropy
functions that operate on Numpy
arrays

• Eventually the computation is
executed by existing C / C++ / Fortran
code. Uses a simple Python interface,
just passing basic types (numbers,
strings and array buffers) between
Python and C / C++ / Fortran, not
Python or C++ objects.

• If needed, Cython is a nice simple
option should there be algorithms that
can’t be written efficiently in Python

Gammapy – A prototype for the CTA science tools Julien Lefaucheur

1 """Make a counts image with Gammapy."""

2 from gammapy.data import EventList

3 from gammapy.image import SkyImage

4 events = EventList.read(’events.fits’)

5 image = SkyImage.empty(

6 nxpix=400, nypix=400, binsz=0.02,

7 xref=83.6, yref=22.0,

8 coordsys=’CEL’, proj=’TAN’,

9)

10 image.fill_events(events)

11 image.write(’counts.fits’)

Figure 2: An example script using Gammapy to make a counts image from an event list. This is used in
Section 3 to explain how Gammapy achieves efficient processing of event and pixel data from Python: all
data is stored in Numpy arrays and passed to existing C extensions in Numpy and Astropy.

spectral points or source catalogs), astropy.wcs.WCS for world coordinate systems mapping pixel
to sky coordinates, as well as astropy.coordinates.SkyCoord and astropy.time.Time objects to rep-
resent sky coordinates and times. Astropy.coordinates as well as astropy.time are built on ERFA
(github.com/liberfa/erfa), the open-source variant of this IAU Standards of Fundamental Astron-
omy (SOFA) C library (www.iausofa.org). In Gammapy, we use astropy.units.Quantity objects
extensively, where a quantity is a Numpy array with a unit attached, supporting arithmetic in com-
putations and making it easier to read and write code that does computations involving physical
quantities.

As an example, a script that generates a counts image from an event list using Gammapy is
shown in Figure 2. The point we want to make here is that it is possible to efficiently work with
events and pixels and to implement algorithms from Python, by storing all data in Numpy arrays
and processing via calls into existing C extensions in Numpy and Astropy. E.g. here EventList
stores the RA and DEC columns from the event list as Numpy arrays, and SkyImage the pixel data
as well, and image.fill(events), and all processing happens in existing C extensions implemented or
wrapped in Numpy and Astropy. In this example, the read and write methods call into astropy.io.fits
which calls into CFITSIO ([24]), and the image.fill(events) method calls into astropy.wcs.WCS and
WCSLib ([25]) as well as numpy.histogramdd.

Gammapy aims to be a base package on which other more specialized packages such as Fer-
mipy (github.com/fermipy/fermipy) for Fermi-LAT data analysis or Naima [15] for the modeling
of non-thermal spectral energy distributions of astrophysical sources can build. For this reason we
avoid introducing new required dependencies besides Numpy and Astropy. That said, Gammapy
does import the following optional dependencies to provide extra functionality (sorted in the order
of how common their use is within Gammapy). Scipy [26] is used for integration and interpolation,
Matplotlib [27] for plotting and Sherpa [2, 3, 4] for modeling and fitting. In addition, the follow-
ing packages are used at the moment for functionality that we expect to become available in the
Astropy core package within the next year: regions (astropy-regions.readthedocs.io) to handle sky
and pixel regions, reproject (reproject.readthedocs.io) for reprojecting sky images and cubes and
healpy (healpy.readthedocs.io) for HEALPix data handling.

5

Note	that	this	is	different	how	the 
Fermi	ST	/	Fermipy	and	Gammalib	/	
ctools	Python	interfaces	work.  
 
They	don’t	expose	event	and	pixel	data	
as	Numpy	arrays,	and	thus	it	is	not	easily	
possible	to	write	custom	models	(for	sky	
or	background)	or	even	IRF	models	or	
likelihood	functions	in	Python.

31

Interoperability with scientific Python stack  
Python and Numpy are glue!

Python’s Scientific Ecosystem
(and
many,
many
more)

Bokeh

Basic	philosophy	in	the	scientific	Python	stack:	store	data	in	Numpy	arrays, 
so	that	they	can	be	easily	processed	by	any	package	(without	a	copy)	and	passed	to	C	/	C++	/	Fortran	codes

32

Python is Glue.

Gammapy features and  
recent developments

33

Gammapy features

• gammapy.data & gammapy.irf 
IACT DL3 data handling

• gammapy.image 
2-dim image analysis

• gammapy.spectrum  
1-dim region spectral analysis

• gammapy.background 
Background modeling methods 
(might merge in image, spectrum cube)

• gammapy.cube 
3-dim cube analysis (work in progress)

• gammapy.detect 
Source detection (image-based for
now)

EVENTS EVENTS AEFF

EDISP PSF BKG

E = 1 TeV 
E = 3 TeV

EVENT_ID TIME ENERGY RA DEC

FIGURE 3. Illustration of major components of IACT DL3 data (using a H.E.S.S. 1 Crab nebula observation). The EVENTS

are stored as a table with the most relevant parameters shown. To derive spectra and morphology measurements of astrophysical
sources, instrument response functions (IRFs) are used: e↵ective area (AEFF), energy dispersion (EDISP), and point spread function
(PSF). Sometimes background (BKG) models are also created and released as part of DL3 data (as an additional IRF component),
and other times they are derived at the science tools level. Note that this picture is not complete, see the “IACT DL3” section.

Data models and formats

This section gives an overview of the current status and plans for the gamma-ray data model and formats. As men-
tioned before, this e↵ort was only started recently and none of the formats should be considered stable. The next two
sections will describe the e↵ort to define an event data model and format (DL3) and higher-level formats for sky-maps,
spectra, and lightcurves (DL4), i.e. a content split as already illustrated in Figure 1. In the data specification document
we have created a “general” section where common quantities are defined, such as precise definitions of time scales
as well as coordinate systems. There are some general topics still under discussion, e.g. there is no consensus on how
specific or flexible the format specifications should be. E.g. some people prefer to be very specific (data must be stored
in FITS files, data types and units fixed), others would prefer to be flexible (only define header keywords and column
names, but data can be stored in other file formats as well, e.g. text-based formats like ECSV).

Data level 3 specifications
The interface between low-level (calibration, shower reconstruction, gamma-hadron separation) and high-level (sci-
ence tools) analysis for gamma-ray data is usually represented by an event list, where at a minimum the EVENT ID,
TIME, as well as the reconstructed ENERGY and sky position (RA, DEC) is given for every event. In addition, instrument
response functions (IRFs) as well as auxiliary technical information such as telescope configuration options, good
time intervals (GTIs), live-time, and pointing information (collectively called TECH in the CTA context) are needed
by the science tools to compute exposures, e↵ective resolutions (PSF and EDISP), and ultimately fluxes to compare
the data with sky models. This DL3 data, illustrated in Figure 3, is similar for all gamma-ray telescopes (and other
event-recording instruments like e.g. neutrino telescopes). One major di↵erence that a↵ects data formats and analysis
tools is whether the gamma-ray telescope was operated in a pointed observation mode (like IACTs most of the time)
or in a slewing mode (like HAWC or Fermi-LAT most of the time).

The current specification contains a very preliminary proposal of a data model and formats for IACT DL3 data

Fermi-LAT	Galactic	plane	survey	TS	image	(tutorial)
34

http://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/notebooks/detect_ts.ipynb

Gammapy features

• gammapy.stats  
Statistics methods

• gammapy.time 
Time analysis (not much available yet)

• gammapy.catalog
• Fermi-LAT spectra, lightcurves
• Next: TeV data (gamma-cat)

• gammapy.astro  
Some simple models for Galactic sources
and source populations 
(could go in separate higher-level science package)

• gammapy.scripts 
Command line interface (CLI) tools for
common operations 
(not much available yet, see comments on science
too user interface in backup slides)

Gammapy – A Python package for g-ray astronomy Axel Donath

Figure 4: Galactic source population simulated using Gammapy , assuming a radial distribution of sources
after [7] and the spiral-arm model of [8].

6. Planned functionality

Gammapy already includes key analysis features like morphology and spectrum fitting but
both are currently limited to either 2D image-based data or 1D spectral data. As a major next step
we plan to support joint likelihood fitting of datasets, as illustrated in Figure 5. Events are binned
into longitude, latitude and energy cubes and fitted simultaneously with spectral and spatial models
taking energy-dependent background, exposure and point spread function (PSF) into account.

This approach will allow joint likelihood analysis across different experiments. For instance
simultaneous likelihood fitting of Fermi and H.E.S.S. data.

Support for un-binned analyses is not planned.

7. Summary

Gammapy 0.3 is still alpha quality software. It is a package where standard g-ray analyses are
available on the one hand while, on the other hand, integration and prototyping of new methods is
easily possible. So far it only contains limited functionality but the setup of documentation, testing
and deployment is already very advanced. It’s scope will continously grow and we hope that
many users and developers show interest in open and reproducible g-ray astronomy with Python.
As long-term goal we would like Gammapy to turn into a fully community-developed package.
So all contributions to Gammapy are welcome! If you don’t know how to turn your scripts into
production-quality, reusable code, please get in touch with us (e.g. using the mailing list) and we
will help you get there!

For further information on how Gammapy and other tools are being used for H.E.S.S. data
analysis, we encourage you to look at [9].

7

35

https://github.com/gammapy/gamma-cat/

gammapy.maps

• New sub-package gammapy.maps,
developed by Matthew Wood (Fermi
ST, fermipy)

• Not used for analysis in Gammapy
for analysis yet, but probably this is
the basis of analysis in the future.

• Data formats specified, based on
experience from Fermi ST, Fermipy
and pointlike

• Why? Support HEALPix, sparse maps
and arbitrary extra axes (n-dim)

• Discussions and some work ongoing
with Thomas Robitaille about what
belongs in astropy.healpix and
astropy.reproject vs gammapy.maps

36

Sensitivity computation
B.Khelifi (& J. Lefaucheur) – 11/05/17

● Reminder of its definition (approved for the
TDR publication and thus for the KSPs):

– ≥5s, Ng ≥ 10, Ng ≥ 5%×Nbkg, a = 0.2

● Use of the GammaPy package (v0.5)

– Based on the function
spectrum.utils.CountsPredictor

1) Comparison with the standard
definition

In the IRFs, storage of the sensitivity (black)
GammaPy: red star
→ Good agreement (<10%), except the
lowest energy bin.
Deeper investigation needed (with Gernot)

2) When changing its definition
By relaxing alternatively the constrains on Ng
minimum and a → expected improvements

3) Next steps
Computation at different offsets, for extended
sources
Computation for the 3D analysis

The GammaPy package reproduces well the standard sensitivities

30 min

37

Another recent addition: Lomb-Scargle

• Jake VanderPlas added
astropy.stats.LombScargle

• Matthias Wegen (DESY Zeuthen)
started to add Lomb-Scargle
peak significance estimation
methods to gammapy.time

• Last week saw that Jake is adding
similar things to Astropy

• -> it’s important to stay in
contact and collaborate with the
larger astronomy community!

Example using LS 5039 HESS light curve (data from gamma-cat):  
http://docs.gammapy.org/en/latest/time/period.html

38

http://docs.gammapy.org/en/latest/time/period.html

Python in Astronomy yearly conferences

Python	in	Astronomy	2018	was	just	announced.  
It’s	a	great	meeting	series,	also	for	beginners,	not	just	for	experts!

39

HESS GPS - real TeV sky
This	is	the	official	HGPS	map,	not	one	re-computed	with	Gammapy.

40

CTA 1DC GPS - simulated TeV sky

41

First	quick-look	survey	map,	already	outdated,	some	Gammapy	issues	fixed	last	week	…

Gammapy next steps

Some thoughts for Gammapy in 2018

42

Gammapy next steps

• I don’t know what Gammapy will be 5 years from now
• But I think the foundation and philosophy is sound and it’s a

project worth investing in:
• a flexible, high-level analysis package for gamma-ray

astronomy built on Python, Numpy and Astropy
• using an open development model (Github)

• For the near future, some key things for Gammapy to focus
on:
• Improve quality & clean up (code, tests, docs)
• Rewrite modeling / fitting
• Grow the core team and project

43

Rewrite modeling and fitting

• Currently we mainly use Sherpa for modeling and fitting.
• Sherpa is very nice for what it natively supports: classical 2-dim image and

1-dim spectrum analysis
• Sherpa is very flexible and powerful: Python modelling language, linked

parameters, user-defined models in Python, battle-tested optimisers and
parameter error estimators

• So far we have mostly tried to wrap or extend Sherpa to our use-cases.
This works to a certain extent, we have working examples for 3D analysis
or custom likelihood for MWL data (e.g. for radio, X-ray, Fermi-LAT, IACT).

• We could probably go all-in on Sherpa and make it work for all use cases
for CTA. But I’m not sure we should, mainly because extending it for our
use cases (e.g. energy-dependent PSF, 3D analysis) results in a complex
codebase that isn’t easy to fully understand and extend for people new to
Python / Sherpa. Also, it’s not clear if Sherpa will be developed and
supported 10 or 20 years from now.

44

Rewrite modeling and fitting

• So my suggestion for Gammapy is that we continue to implement a
simple modeling / likelihood / fitting code, either from scratch
(started in gammapy.utils.modeling) or using astropy.modeling (if we
need a flexible Python modeling language and linked parameters).

• The basis is binned analysis using the recently developed
gammapy.maps by Matthew Wood, which supports efficient analysis of
low-count data via multi-resolution and sparse maps (it’s clear that
this works -> Toby Burnett’s pointlike package for Fermi-LAT)

• To a certain degree it’s still not clear what CTA needs (e.g. event types, IRF dependencies), but probably
a flexible framework developed now based on our experience from exiting IACTs and Fermi-LAT is
sufficient for most use cases, and flexible enough to be extended to all CTA use cases over the next 10 -
20 years.

• One nice experiment would be to use Tensorflow (supports all we need, and execution on many CPU /
GPU) , or at least one of the Numpy array based automatic differentiation packages, to try efficient
gradient-based optimisers. Suggest to do this prototyping outside of Gammapy for now, or in a
separate sub-package -> too new / hasn’t been proven appropriate for Gammapy (i.e that it works well
and is easy to install and use for all).

45

Getting started with
Gammapy

Install, docs, tutorials

46

Gammapy installation

• Gammapy works with Python 2.7 and 3.4+ on Linux and Mac 
Windows: partly (Sherpa not supported on Windows)

• Stable version:
• pip install gammapy

• Binary packages via conda:
• conda install -c conda-forge gammapy

• Development version:
• git clone https://github.com/gammapy/gammapy.git 

cd gammapy 
pip install .

• If you’re not sure how to install Python software, use
Anaconda. It’s the most-used distribution and usually just
works, on Linux, Mac and Windows.

47

Gammapy docs

48

Gammapy tutorial notebooks

49

Gammapy tutorial for CTA 1DC

First notebook: cta_1dc_introduction.ipynb
Second notebook: cta_data_analysis.ipynb

50

https://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/notebooks/cta_1dc_introduction.ipynb
https://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/notebooks/cta_data_analysis.ipynb

Gammapy references

• Code: https://github.com/gammapy/gammapy
• Docs: http://docs.gammapy.org
• Tutorials: https://nbviewer.jupyter.org/github/gammapy/

gammapy-extra/blob/master/index.ipynb
Questions, comments, requests?
• Mailing list: http://groups.google.com/group/gammapy
• CTA 1DC: https://forge.in2p3.fr/projects/data-challenge-1-

dc-1/wiki#Sharing-of-analysis-results

51

https://github.com/gammapy/gammapy
http://docs.gammapy.org
https://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/index.ipynb
https://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/index.ipynb
https://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/index.ipynb
http://groups.google.com/group/gammapy
https://forge.in2p3.fr/projects/data-challenge-1-dc-1/wiki#Sharing-of-analysis-results
https://forge.in2p3.fr/projects/data-challenge-1-dc-1/wiki#Sharing-of-analysis-results
https://forge.in2p3.fr/projects/data-challenge-1-dc-1/wiki#Sharing-of-analysis-results

Gammapy tutorial tomorrow

• To prepare for the Gammapy tutorial tomorrow:
• Install the latest development version of Gammapy
• Clone the tutorial repository for tomorrow

• If you have any questions or issues, let us know.  
(e.g. Bruno, Julien, Régis, me)

52

Concluding remarks

53

Concluding remarks

• Python / Numpy / Astropy has become very popular and
widely used for astronomical pipelines and science tools

• Gammapy is an Astropy-affiliated package for gamma-ray
astronomy. The development philosophy is Python first, build
on existing packages, collaborate

• With Gammapy, you can currently do “classical” VHE data
analysis (2-dim images & 1-dim spectra), a first working
Sherpa-based prototype for 3D analysis exists

• I hope Gammapy will mature from a prototype to become a
nice science tool for CTA. 
Strengths: simplicity, flexibility, interoperability

• Conclusion: exiting times ahead for CTA and Gammapy!

54

