

cherenkov telescope array

# Reconstruction

#### Where does your science data come from?

Karl Kosack **CEA Saclay** 

Atelier CTA France Analyse, Observatiore de Meudon, 2 Oct 2017

# Goals of CTA Data Processing (Cta

- Record and maintain all CTA data and related software over 30+ years
- Make efficient use of use modern computing systems (grids, clouds, GPUs, etc.)
- Maintain ability to **re-process old data** 
  - apply newer techniques, better calibration
  - check old results
  - versioned software and related support files

#### Generate common data products for science users

- Event Lists
- Instrumental Response Functions (IRFs)
- Associated Technical data (pointing, weather, etc.)

#### provide robust, well-understood science results

# Goals of CTA Data Processing (Cta

- Record and maintain all CTA data and related software over 30+ years
- Make efficient use of use modern computing systems (grids, clouds, GPUs, etc.)
- Maintain ability to re-process old data
  - apply newer techniques, better calibration
  - check old results
  - -versioned software and related support files

#### Generate common data products for science users

- Event Lists
- Instrumental Response Functions (IRFs)
- Associated Technical data (pointing, weather, etc.)

#### provide robust, well-understood science results







grazing-incidence mirror















#### (Cta **Hadronic Showers** cosmic ray cosmic ray $\pi 0$ π– $\pi$ + Nucleon Cascade e+ u+ EM Cascade e-Cascade EM Cascade EM Cascade **EM** sub-showers 200 m

**CTA Data processing** 

### **Hadronic Showers**





**CTA Data processing** 

# On-site Data Path (simplified) (Cta





### Challenge: Raw Data Volume



**CTA Data Processing** 

O(100) Telescopes On the Ground



O(100) Telescopes On the Ground O(10) are triggered per event O(10,000) events per second



*telescope position (m)* -500 0 500 1000

*telescope position (m)* 

-500

O(100) Telescopes On the Ground O(10) are triggered per event O(10,000) events per second O(1000) Pixels, O(1) channels

Γ

1000

500

1400

1200

600

200

*telescope position (m)* 

-500

0L 0

500

O(100) Telescopes On the Ground O(10) are triggered per event O(10,000) events per second

O(1000) Pixels, O(1) channels

O(10) Time slices

25

30

O(10) bits/slice

20

15

Time Slice Index

10

ı\_

1000

5

O(100) Telescopes On the Ground O(10) are triggered per event O(10,000) events per second O(1000) Pixels, O(1) channels

10 tels • 1000 pix • 10 slices • 10 bits • 10,000 Hz ≈ **10 GB/s** 

(CERN ATLAS: 1 GB/s)

Not possible within CTA budget!



-500

telescope position (m)

| Telescope                                                                      | elescope Data rate |           | Data rate<br>(Central Trigger)   |           | <b>Central Trigger</b><br>Full waveform signal from<br>photodetectors (Total 1314h): |         |
|--------------------------------------------------------------------------------|--------------------|-----------|----------------------------------|-----------|--------------------------------------------------------------------------------------|---------|
| LST 110Gb                                                                      |                    | o/s       | 40Gb/s                           |           |                                                                                      |         |
| MST                                                                            | 450G               | o/s       | 150Gb/s                          |           | 130 PB/year                                                                          |         |
| SST 60Gk                                                                       |                    | o/s       | 30Gb/s                           |           |                                                                                      |         |
| Total                                                                          | 610G               | o/s       | 220Gb/s                          | ≈ 30 GB/s |                                                                                      |         |
| <b>Pixel integration</b><br>3% full waveform                                   |                    | Telescope | Data rate<br>(sampled<br>pixels) |           | Data rate<br>(Integrated)                                                            | Total   |
| signal, rem                                                                    | aining signal      | LST       | 2.2Gb                            | o/s       | 8.6Gb/s                                                                              | 11Gb/s  |
| integrated:                                                                    |                    | MST       | 4.5Gb                            | o/s       | 15.5Gb/s                                                                             | 20Gb/s  |
| 21 PB/year                                                                     |                    | SST       | 1Gb                              | o/s       | 4.1Gb/s                                                                              | 5.1Gb/s |
|                                                                                |                    | Total     |                                  |           |                                                                                      | 36 Gb/s |
| Final estimate including 20% technical data: ≈ 4.5 GB/s<br>CTA North: 5.4 GB/s |                    |           |                                  |           |                                                                                      |         |

CTA South: 3.2 GB/s

→ 40 PB/y, max 370 TB/day!

Source: Nadine Neyroud, CTA PC meeting July 2017

### Constraints

#### Have to worry about:

- Budget (we aren't CERN)
- Off-site link: 1Gb/s
- Want to transfer data off-site in < 10 days

# **Result:** need to reduce raw data to ≈4 PB/year

 additional factor or 10x needed after trace integration (factor of 70x overall from pure raw data)

> → Some fraction of the data processing must occur on-site, and not all data can be retained



Daily data transfer duration/ Day of the year





# Note: Don't forget simulations! (Cta



## Vast amount of Monte-Carlo data are needed to understand the system

- generate Instrumental Response Functions (IRFs) for science
- Train reconstruction algorithms

# Simulation data size is roughly equal to the raw data volume!

both for "parameterized grid" or "runwise" simulations

#### but:

- all versions do not need to be maintained (can delete old files roughly yearly)
- no MC data on-site (so no limit on transfer speed, only cost of storage)

### Solution?



#### We cannot store all data: need ≈70x reduction

- Iossless data compression: factor of 2x at least, maybe closer to 3x with novel techniques, better data formats, etc.
- Iossy data compression:
  - **Drop "uninteresting" waveforms** (and perhaps full pixel info), leaving only 3% of pixels on average with waveforms (typical image size)
  - sparse techniques to compress images or waveforms? (wavelets, curvelets, etc)
  - -drop very hadron-like events
    (only gives factor of 2 or so, and adds complexity)

#### Need to study implementation and science impact

- Real-time? Off-line + local data cache?
- How robust is the technique? Do we lose important info? What are the risks? What can still be "reprocessed" later?

### Data Processing In general



**CTA Data Processing** 

### Data Levels: amount of processing (Cta

#### MCs are somewhere here right now

Pipeline starts here Will need to eventually produce data here to be compatible with "real" CTA data

#### **Reconstructed Events**

(many reconstructions and parameters, no more telescopes)

Science Data: Classified Events (final reconstruction), IRFs

- **R0** (*raw low-level*) camera data transmitted from telescope to central servers. R0 content and format is internal to each camera and is specified and coordinated between individual camera teams.
  - **R1** (*raw common*) data output by an individual camera functional unit to the camera DAQ functional unit. This is the first level of data seen by the ACTL system and is therefore as common as possible between all cameras/hardware. Exceptionally, some R1 data may be stored for engineering purposes.
- **DL0** *(raw archived)* all archival data from the data acquisition hardware/software. This is the first level of data that are stored in the bulk archive. This includes both camera event data and technical data from other subsystems, such as non-camera devices or software.
- **DL1** (*processed*) processed DL0 data that may still include some TEL data and parameters derived from them. For example this includes calibrated image charge, Hillas parameters, and a usable telescope pattern. This is only optionally stored in the archive.
- **DL2** *(reconstructed)* reconstructed shower parameters such as energy, direction, particle ID, and related signal discrimination parameters. At this point, no TEL information is stored. For each event this information may be repeated for multiple reconstruction and discrimination methods. This is only optionally stored in the archive. At this point, telescope-wise info is generally dropped.
- **DL3** *(reduced)* Sets of selected (e.g. gamma-ray candidates, electron candidates, selected hadron candidates, etc.) events with a single final set of reconstruction and discrimination parameters, along with associated instrumental response characterizations and any technical data needed for science analysis.
- **DL4** *(science)* binned data products like spectra, sky maps, or light curves, along with associated data (source models, fit results, etc).
- **DL5** *(high-level)* high-level or "legacy" observatory data, such as CTA survey sky maps or the CTA source catalog.

#### **CTA Data processing**

# **Data Processing Pipeline**





CTA Data proCEA, MPIK, LAPP, LUTH, INAF, IFEA, others

# **Data Processing Pipeline**





CTA Data proCEA, MPIK, LAPP, LUTH, INAF, IFEA, others

Karl Kosack 18

# Main Data Processing Pipeline (Cta



CTA Data processing

Karl Kosack

# Main Data Processing Pipeline (Cta



CTA Data processing

Karl Kosack

### **Stage 1: Per-telescope**





### **Stage 1: Per-telescope**





## **Stage 2: Reconstruction**





## **Stage 2: Reconstruction**




## **Stage 2: Reconstruction**







#### Use errors on single-telescope prediction

use global minimization (current test show no significant improvement over a good weighting scheme)

#### PIPELINES

Karl Kosack 22

## Template Model Reconstruction (Cta



PIPELINES

## **3D Model Reconstruction**





Model shower as 3D object (e.g. Gaussian)

position, direction, energy as parameters

Project shower image into cameras

Simultaneously fit real images to model

No model datacube needed, but model much more simplistic

## **Basic Machine Learning**





#### Karl Kosack 26

Note: Also event quality classification, e.g. good PSF, good spectral resolution, sensitivity to unknown sources, ...

machine learning in Python

**CTA Data processing** 

#### 2-stage machine learning: **per-telescope prediction** → **per-shower prediction**

**Stage 3: Progenitor Discrimination** (



- using RandomForestClassifier implemented in scikit-learn
- data-mining approach: just throw all the data at it that we have
  - distance between telescope reconstructed impact position
  - error estimate on the impact position
  - Hillas parameters: width, length, skewness, kurtosis
  - total signal on camera
  - signal of the pixel with the highest count
  - total signal on all selected telescopes
  - number of selected telescopes



for now, cut on *NTels* > 2 & *gammaness* > 0.75



#### T. Michael

# **Stage 2: Energy Reconstruction**

#### Several methods:

- Basic lookup-table as function of integrated signal + impact parameter
- Machine-learning
  Regression

   (currently used)
  - hillas parameters, reconstruction parameters, number of telescopes, etc
  - Predict per telescope and then combine



relative Energy Error \*\* wavelets \*\* RandomForestRegressor

T. Michael

### **Output: Science Data**

CTA Dat



### **Event-List**

| event_i | n_tels | RA   | DEC    | Е    | class | ••• |
|---------|--------|------|--------|------|-------|-----|
| 1       | 5      | 23.3 | -40.1  | 0.01 | g     |     |
| 2       | 34     | 24.6 | -40.5  | 20.0 | g     |     |
| 3       | 3      | 23.5 | -41.12 | 0.45 | g     |     |
| 4       | 4      | 21.3 | -38.2  | 1.03 | h     |     |

#### **Instrumental Responses:**



 $\log_{10}(E_{inc})$ 

### **Output: Science Data**



### **Event-List**

| event_i | n_tels | RA   | DEC   | E        | class       | •••         |
|---------|--------|------|-------|----------|-------------|-------------|
| 1       | 5      | 23.3 | -40.1 | 0.01     | g           |             |
| 2       | 34     | 24.6 | -405  | 20.0     | g           | - AND AND A |
| 3       | 3      | 23.5 | Res   | ponse ma | atrices are | in gener    |
| 4       | 4      | 21.3 | -     |          |             | gener       |

0.025

#### Instrument

a \* 7 7 4 ÷

•

9 2 2 3

0.0

0.5

 $\log_{10}(E_{inc})$ 

10

1.5

### Position in FOV,



**CTA Dat** 



Many studies needed to understand the best factorization!

29

# **Stage 4: Automated Science** (Cta

Produce preliminary results for proposal monitoring and alerts

### **Science Tools**



Custom Tools for Real-Time science and alert generation (on-site)





# **Stage 4: Automated Science** (Cta

Produce preliminary results for proposal monitoring and alerts

### **Science Tools**



Custom Tools for Real-Time science and alert generation (on-site)







#### Multi-"pass" data production (like Fermi)

- All data re-processed with latest validated/verified techniques (reco, calibration) ≈ yearly
- New DL3 data disseminated,

#### Starting point:

basic Hillas Analysis (good enough to reproduce all CTA requirements). First data release will likely be only this!

#### **Future Improvements:**

- Divide events into classes (with each their own IRF)
  - by which telescopes are triggered
  - by reco technique used (may be more than one)
  - etc.
- ▶ Fancier image cleaning
- Fancier reconstruction

# Implementing a Data Processing Pipeline



**CTA Data Processing** 

## **Developers in CTA**



#### **Developers:**

- few in number (so far)
- Iverse in skill and background, generally non-professionals
- Iocated all around the world
- May pay some professionals for code review and guidance, however

#### **Development constraints:**

- want rapid development cycle
- Need strict versioning and release of product and related dependencies
- Need quality control and validation testing (automated as much as possible)

# Building a Framework for the Pipeline (Cta



## Building a Framework for the Pipeline (Cta



## Building a Framework for the Pipeline (Cta



did it this way

with python and high-level API







**CTA Data processing** 









## ctapipe status





**ctapipe:** python/C++ based data processing framework

- Basic Calibration & Trace-Integration for all cameras erenkov Ima second tessing for a second pera geomet
- (plane-intersection mPACT model so far)
- Event Classification & Discrimination

Inalysis

estbed

Working successfully,

Smallish team (<20 developers, only ≈5 very active), and all basic features done after about 1 year of work

Still lots of development to go

Karl Kosack

## **Workflow Management**



# Pipeline must be executed on distributed computing systems (EGI Grid, etc).

- may be broken in to many steps and parallelized in various ways
- implies complex job management, job dependency tracking, monitoring
- may be simple batch system or more complex big-data solution

#### **Current prototype:**

- DIRAC middleware with custom CTA front-end
  - used for Monte-Carlo successfully



- complex data-driven workflows are still experimental
- Some "big-data" systems (Spark, Storm, etc) being tested for possible use on-site

### The challenge



Conceptually, data processing is well understood and we have several reference implementations...

#### What is more difficult is verification and quality:

- It does the real instrument perform as simulated?
- Which algorithms are the most sensitive and least affected by systematics?
- How can be better understand/mitigate the effects of atmospheric variation?
- how to deal with data and hardware problems?
  - -MCs have no non-uniform NSB, stars, non-working pixels
  - from experience: lots of unexpected things to learn about the hardware, even 10 years after start!
  - Bright sources (low hanging fruit) less affected, but start to see issues when we do deep observations (e.g. Key Science Projects!)

#### This will be the bulk of the data processing work! Need lots of help.

## Making a coherent system: CTA Architecture Modeling



**CTA Data Processing** 

Why make an architectural model? (CC

### **Connect Requirements to Design**

- I don't build something unnecessary
- I don't forget something important

### **Define Common View of full system**

- clear boundaries and responsibilities
- coherent interfaces
- In the second second
- explore staging scenarios
- estimate effort and complexity



che tele arra

Team formed by CTAO gGmbH following Architecture Plan

- Team Leader: M. Füßling (CTAO)
- Primary Stakeholder Representative: J. Hinton (MPIK, CTAO)
- Architecture Consultant: L. Hagge (DESY)
- Modeling Expert: I. Oya (DESY)
- Additional CTA Experts: K. Kosack (CEA), N. Neyroud (CNRS), G. Tosti (INAF)
- CTAO Systems Engineers: F. Dazzi and A. Mitchell.
- External Consultants: A. Morgenstern (IESE), D. Rost (IESE)

### **CTA System Context**



cherenko telescop

array

### CTA Data procesSource: Matthias Füßling, CTA architecture team

### Karl Kosack



act Traces Chain Example 1

### **Process Modeling**

and actions

Processes are decomposed to activities



«Objective» 02: Scientifically

Optimised

Operation

«benefits from»

Science User

## **Defining Systems**

#### Context



#### **Functionality**



CTA Data procesSource: Matthias Füßling, CTA architecture team

nerenkov telescope

array

### Inside the box





CTA Data procesSource: Matthias Füßling, CTA architecture team



- High-level systems will replace current working packages
- IKC agreements for systems and subsystems
- Internal model for each System, by each work package
- Identify groups/institutes to produce each subsystem
- implementation!

Extra info, if there is time:

# Modern Development Practices:

### How to maintain and produce good code



**CTA Data Processing**
## CTA SYS group and PO are preparing **detailed guidelines for software** in CTA



#### **Programming Standards**

| Та | ble of Contents                                       | 3      |  |  |  |  |  |
|----|-------------------------------------------------------|--------|--|--|--|--|--|
| 1  | Introduction                                          | 4      |  |  |  |  |  |
|    | 1.1         Purpose                                   | 4<br>4 |  |  |  |  |  |
| 2  | Computing Environments                                | 5      |  |  |  |  |  |
| 3  | Languages                                             | 6      |  |  |  |  |  |
|    | 3.1 Code Style Guidelines                             | 7      |  |  |  |  |  |
|    | 3.2 Code Design Guidelines                            | 9      |  |  |  |  |  |
|    | 3.3 Code Documentation and Comments Standards         | 11     |  |  |  |  |  |
| 4  | Development Environments                              | 12     |  |  |  |  |  |
|    | 4.1 Compilers, Interpreters, and Runtime Environments | 12     |  |  |  |  |  |
|    | 4.2 External Libraries and Dependencies               | 12     |  |  |  |  |  |
| 5  | Version Numbering and Releases                        | 14     |  |  |  |  |  |
| 6  | Licensing                                             | 15     |  |  |  |  |  |
| Re | References                                            |        |  |  |  |  |  |
| GI | Glossary                                              |        |  |  |  |  |  |



#### **Software Development Plan**

| 1 | Introduction                                                        | 4                   |
|---|---------------------------------------------------------------------|---------------------|
|   | 1.1 Purpose                                                         | 4                   |
|   | 1.2 Scope                                                           | 5                   |
|   | 1.3 Deliverables                                                    | 5                   |
|   | 1.4 Organization and Responsibilities                               | 6                   |
| 2 | Software Management and Processes                                   | 8                   |
|   | 2.1 Software Engineering Processes                                  | 8                   |
|   | 2.2 Phases and Reviews                                              | 9                   |
| 3 | Software Requirements and Architecture                              | 13                  |
|   | 3.1 Software Requirements                                           | 13                  |
|   | 3.2 Approach towards an integrated <i>CTA</i> Software Architecture | 14                  |
| 4 | Software Design and Implementation                                  | 18                  |
|   | 4.1 Software Development Model                                      | 18                  |
|   | 4.2 Practical Advice for Software Development                       | 18                  |
|   | 4.3 Detailed Software Design                                        | 19                  |
|   | 4.4 Implementation and Testing                                      | 20                  |
|   | 4.5 Software Integration and Testing                                | 20                  |
|   | 4.6 Software Configuration Management (Revision Control)            | 20                  |
|   | 4.7 Shared Development Support Platform                             | 22                  |
| 5 | Software Quality Assurance                                          | 26                  |
|   | 5.1 Software Product Assurance Implementation                       | 27                  |
|   | 5.2 Software Process Assurance                                      | 27                  |
|   | 5.3 Software Product Quality Assurance                              | 31                  |
| 6 | Software Verification, Validation and Acceptance                    | 33                  |
|   | 6.1 Software Verification                                           | 33                  |
|   | 6.2 Software Validation                                             | 34                  |
|   | 6.3 Software Delivery and Acceptance                                | 35                  |
| 7 | Software Early Operation and Maintenance                            | 36                  |
|   | 7.1 Early Operations Procedures                                     | 36                  |
|   | 7.2 Early Maintenance Procedures                                    | 36                  |
| A | Development Models                                                  | <sup>38</sup><br>49 |

### **Code development**





### Issues and Pull-Requests from developer forks

#### • code quality stays same or increases

CTA Data processing

#### github.com/cta-observatory/ctapipe

50

## **Continuous Integration**



### Unit and Regression Testing, Documentation deployment

| cta-observatory / ctapipe                                                                                                                                                                                                                                                                                                                                                                                                    | cassing                                                  | Not just "does it compile?",<br>but "does it (still) work?"                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Current Branches Build History Pull Requests > Build #1306 Job #                                                                                                                                                                                                                                                                                                                                                             | 1306.2                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ✓ v0.5.0 Merge pull request #437 from kosack/improve_example<br>Improve_examples                                                                                                                                                                                                                                                                                                                                             | -o- #1306.2 passed                                       | 📿 Restart jøb                                                                                                                     | note: a CTA software <b>requirement</b> to have this existing code <i>must</i> also add a unit test suite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <ul> <li>Commit 8836d67</li> <li>Compare v0.5.0</li> <li>Branch v0.5.0</li> <li>Karl Kosack authored</li> <li>GitHub committed</li> </ul>                                                                                                                                                                                                                                                                                    | To allo allo                                             | 1161 corrector<br>1161 ttopipe/a<br>1165 ctopipe/a<br>1166 ctopipe/a<br>1167 ctopipe/a                                            | alysis/camena/tests/test_chargenesolution.py::test_add_charges_PASSED<br>malysis/camena/tests/test_chargenesolution.py::test_get_charge_resolution_PASSED<br>malysis/camena/tests/test_chargenesolution.py::test_get_binned_charge_resolution_PASSED<br>malysis/camena/tests/test_chargenesolution.py::test_limit_curves_PASSED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Job log View config                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          | 1163 ctopipe/on<br>1169 ctopipe/on<br>1170 ctopipe/co<br>1171 ctopipe/co<br>1172 ctopipe/co<br>1173 ctopipe/co                    | <pre>1164 ctopipe/analysis/comend/tests/test_chargenesolution.py::test_poal_PASSED<br/>1169 ctopipe/analysis/comend/tests/test_calibrator.py::test_canera_calibrator_PASSED<br/>1170 ctopipe/calib/comend/tests/test_calibrator.py::test_canera_calibrator_PASSED<br/>1171 ctopipe/calib/comend/tests/test_dib.py::test_canera_dlb_reducer_PASSED<br/>1172 ctopipe/calib/comend/tests/test_dib.py::test_canera_dlb_reducer_PASSED<br/>1173 ctopipe/calib/comend/tests/test_dib.py::test_check_rl_exist_PASSED<br/>1174 ctopipe/calib/comend/tests/test_dib.py::test_check_dlb_exist_PASSED<br/>1175 ctopipe/calib/comend/tests/test_dib.py::test_check_dlb_exist_PASSED<br/>1176 ctopipe/calib/comend/tests/test_dib.py::test_check_dlb_exist_PASSED<br/>1176 ctopipe/calib/comend/tests/test_dib.py::test_check_dlb_exist_PASSED<br/>1176 ctopipe/calib/comend/tests/test_rl.py::test_check_dlb_exist_PASSED<br/>1177 ctopipe/calib/comend/tests/test_rl.py::test_check_db_exist_PASSED<br/>1179 ctopipe/calib/comend/tests/test_rl.py::test_check_db_exist_PASSED<br/>1179 ctopipe/calib/comend/tests/test_rl.py::test_check_db_exist_PASSED<br/>1179 ctopipe/calib/comend/tests/test_rl.py::test_check_rb_exists_PASSED<br/>1179 ctopipe/calib/comend/tests/test_rl.py::test_check_rb_exists_PASSED<br/>1179 ctopipe/calib/comend/tests/test_rl.py::test_check_rb_exists_PASSED<br/>1179 ctopipe/calib/comend/tests/test_rl.py::test_check_rb_exists_PASSED<br/>1179 ctopipe/calib/comend/tests/test_cond_pictes_rb_SED<br/>1179 ctopipe/calib/comend/tests/test_cond_pictes_rb_SED<br/>1180 ctopipe/calib/tests/test_condinates.py::test_cond_cpedestals_from_traces_PASSED<br/>1181 ctopipe/comdinates/tests/test_condinates.py::test_com_to_test_PASSED<br/>1182 ctopipe/comediates/test_component.py::test_component_is_abstract_PASSED<br/>1183 ctopipe/comediates/test_component.py::test_component_sinple_PASSED<br/>1183 ctopipe/comediates/test_component.py::test_component_sinple_PASSED</pre>                                                                                                                         |  |  |
| I Norker information 6 Build system information 73                                                                                                                                                                                                                                                                                                                                                                           | ×                                                        | R 1174 ctopipe/ca<br>1175 ctopipe/ca<br>1176 ctopipe/ca<br>1177 ctopipe/ca<br>1177 ctopipe/ca                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <ul> <li>74 \$ expart DEBIAN_FRONTEND=noninteractive</li> <li>110 \$ sude apt-get install libssll.0.0</li> <li>134 3.6 is not installed; attempting download</li> <li>135 Downloading archive: https://s3.amozonaws.com/trav<br/>archives/binaries/ubuntu/12.04/x86_64/python-3.6.ta</li> <li>136 \$ sude tar xjf python-3.6.tar.bz2directory /</li> <li>137 \$ git clonedepth=50branch=v0.5.0 https://github.com</li> </ul> | is-python-<br>r.bzž<br>/cta-observatory/ctapipe.git_cta- | 11/9 ctopipe/co<br>1130 ctopipe/co<br>1131 ctopipe/co<br>1132 ctopipe/co<br>1133 ctopipe/co<br>1134 ctopipe/co<br>1135 ctopipe/co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 159 \$ git submodule updateinitrecursive<br>161<br>162 Setting environment variables from repository sett<br>161 \$ expect 60 TOZEN-Isocure1                                                                                                                                                                                                                                                                                 | ings                                                     | 1186 ctopipe/co<br>1187 ctopipe/co<br>1188 ctopipe/co<br>1180 ctopipe/co<br>1190 ctopipe/co<br>1191 ctopipe/co                    | <pre>we/lests/test_container.py::test_container_PASSED we/tests/test_container.py::test_containers_PASSED we/tests/test_container.py::test_nap_containers_PASSED we/tests/test_container.py::test_container_as_dict_PASSED we/tests/test_factory.py::test_factory_PASSED we/tests/test_provenance.py::test_Provenance_PASSED we/tests/test_provenance.py::test_factory_PASSED we/tests/test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_provenance.py::test_pr</pre> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | TravisCl                                                 | Not quite suff                                                                                                                    | ine/tests/test_provenance.py::test_provenance_contextmanager_PASSED<br>ine/tests/test_provenance.py::test_provenance_contextmanager_PASSED<br>ine_fasseD<br>ion_PASSED<br>ion_PASSED<br>ion_PASSED<br>ion_PASSED<br>ion_PASSED<br>ion_PASSED<br>ion_PASSED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| pytest                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | need a tru                                                                                                                        | e CTA software<br>tion system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| A Data processing                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | Integra                                                                                                                           | Karl Kosack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

### Documentation



### e.g. <u>https://cta-observatory.github.io/ctapipe/</u> regenerated automatically on commits/merges to upstream master $\rightarrow$ Always up-to-date and in sync with code!



**CTA Data process** Frequently Asked Questions

Caution

## **Code Quality Monitoring**



open-source, free cloud system for open-source projects

### Integrates with GitHub (or GitLab) and can be used to block bad code from being committed.

**CTA Data processing** 

## Deployment



### Anaconda cross-platform package manager

- build "conda" packages for each module (mac + linux)
- handles dependencies and virtual-environments that are self-contained for each release
- Iocally-installed virtual envs on CTA Grid in CVMFS shared filesystem
- packages currently hosted on Anaconda Cloud in ctaobservatory channel
  - again only for public software, but can host our own private channel locally (no resources for that currently!)

```
$ conda env create -n cta-v1 python=3.6
```

```
$ source activate cta-v1
```

\$ conda install -c cta-observatory ctapipe=0.5

## Deployment





### Anaconda cross-platform package manager

- build "conda" packages for each module (mac + linux)
- handles dependencies and virtual-environments that are self-contained for each release
- Iocally-installed virtual envs on CTA Grid in CVMFS shared filesystem
- packages currently hosted on Anaconda Cloud in ctaobservatory channel
  - again only for public software, but can host our own private channel locally (no resources for that currently!)

```
$ conda env create -n cta-v1 python=3.6
```

```
$ source activate cta-v1
```

\$ conda install -c cta-observatory ctapipe=0.5

#### **CTA Data processing**

## Final remarks

Lots of software under development and to be developed for CTA! Only touched on some here...

# A few places where people are needed (probably lots more):

#### Data Volume Reduction:

- needs a dedicated team to study and implement
- Some work started (e.g. LAPP)
- Data Pipeline:
  - -algorithm study and development
  - good coders to help with code quality and design

- develop data quality monitoring techniques
- verification of algorithms, simulations, and calibration (a continuous effort)
- parallelization and speed
- study factorization of IRFs to improve science results (event classes, etc)

#### Monte-Carlo:

- configuration builder,
- improve algorithms and software
- implement "runwise" Monte-Carlo to simulate real observation conditions

#### Science Tools:

- verification and monitoring of science results
- development of better algorithms

#### Infrastructure:

 Common database system and interface for instrumental configuration (used by pipeline, MCs, array control, hardware teams)

