
Reconstruction
Where does your science data come from? 

Karl Kosack 
CEA Saclay 

Atelier CTA France Analyse, Observatiore de Meudon, 2 Oct 2017

1



Karl KosackCTA Data processing

Goals of CTA Data Processing

‣Record and maintain all CTA data and related software over 30+ years 

‣Make efficient use of use modern computing systems  
(grids, clouds, GPUs, etc.) 

‣Maintain ability to re-process old data 

-apply newer techniques, better calibration 
-check old results 
-versioned software and related support files 

‣Generate common data products for science users 

-Event Lists 
-Instrumental Response Functions (IRFs) 
-Associated Technical data (pointing, weather, etc.) 

‣provide robust, well-understood science results

2



Karl KosackCTA Data processing

Goals of CTA Data Processing

‣Record and maintain all CTA data and related software over 30+ years 

‣Make efficient use of use modern computing systems  
(grids, clouds, GPUs, etc.) 

‣Maintain ability to re-process old data 

-apply newer techniques, better calibration 
-check old results 
-versioned software and related support files 

‣Generate common data products for science users 

-Event Lists 
-Instrumental Response Functions (IRFs) 
-Associated Technical data (pointing, weather, etc.) 

‣provide robust, well-understood science results

2



Karl KosackCTA Data processing

Which Working Packages?

3

Data 
management

Array Control

Previously… Soon…

Data 
Processing and 

Preservation Operations 
Support

Science User 
Support

Observation 
Execution

pipelines, archive, etc. computing 
resources, etc

science tools, 
user gateway etc.

data acquisition 
realtime data 

processing, array 
control, etc.



keV X-ray MeV 𝜸-ray GeV 𝜸-ray TeV 𝜸-ray

grazing-incidence mirror

Chandra, XMM

Comptel

Fermi

photo-electric effect Compton Effect Pair Conversion Extensive Air Shower

gamma-ray detection in context

1m2 @ 1 GeV > 105 - 106 m2 @ 1 TeV400 cm2 @ 5keV 50 cm2 @ 5 MeV

Whipple 10m



Karl KosackCTA Data processing

Electromagnetic Showers

5

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon 
or e-



Karl KosackCTA Data processing

Electromagnetic Showers

5

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon 
or e-



Karl KosackCTA Data processing

Electromagnetic Showers

6

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon 
or e-



Karl KosackCTA Data processing

Electromagnetic Showers

6

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon 
or e-



Karl KosackCTA Data processing

Electromagnetic Showers

6

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

ra,dec

photon 
or e-



Karl KosackCTA Data processing

Hadronic Showers

7

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic 
ray

cosmic ray



Karl KosackCTA Data processing

Hadronic Showers

7

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic 
ray

cosmic ray



Karl KosackCTA Data processing

Hadronic Showers

7

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic 
ray

cosmic ray



Karl KosackCTA Data processing

Hadronic Showers

7

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic 
ray

cosmic ray



Karl KosackCTA Data processing

Camera 
Functional Unit

Camera Data 
AcquisitionCamera 

Functional Unit
Camera Data 
Acquisition

On-site Data Path (simplified)

8

Camera 
Functional Unit

Camera Trigger 
Muon-like trigger 
Basic calibration 

Format event

Camera Data 
Acquisition

Central Data 
Acquisition and 

Triggering

trig

data volume reduction, 
calculation of preliminary 

parameters

Form central trigger 
merge event parameters

On-site storage

Level-A 
(realtime) data 

analysis

Stereo reconstruction 
Event Selection 

Source detection 
alert generation

preliminary 
science data

bulk data

trigger and 
technical data

image params

Note: bulk data is a file/stream 
per camera, not merged

Science 
Alerts



Karl KosackCTA Data processing

Off-site data processing (simplified)

9

Archive
Data 

Processing 
Pipeline

File Transfer 
System

Workflow 
Management

Simulation 
System

Sites

storage and computing resources may be 
distributed over many data centers

Current subsystems in 
the CTA Data Processing 
and Preservation System 

(DPPS)

Observation 
Execution 

System

Array Control, Camera 
Servers,  

Real-time analysis and 
alert generation

Telescopes
Storage & 
Computing 
resources



Karl KosackCTA Data Processing 

Challenge: Raw Data Volume

10



O(100) Telescopes On the Ground

telescope position (m)

CTA Data Size Fermi Estimation



O(100) Telescopes On the Ground

telescope position (m)

O(10) are triggered per event  
O(10,000) events per second

CTA Data Size Fermi Estimation



O(100) Telescopes On the Ground

O(1000) Pixels, O(1) channels

telescope position (m)

O(10) are triggered per event  
O(10,000) events per second

CTA Data Size Fermi Estimation



O(100) Telescopes On the Ground

O(1000) Pixels, O(1) channels

telescope position (m)

O(10) Time slices 

O(10) bits/slice 

O(10) are triggered per event  
O(10,000) events per second

CTA Data Size Fermi Estimation



O(100) Telescopes On the Ground

O(1000) Pixels, O(1) channels

telescope position (m)

O(10) Time slices 

O(10) bits/slice 

O(10) are triggered per event  
O(10,000) events per second

10 tels • 1000 pix • 10 slices • 
10 bits • 10,000 Hz  ≈ 10 GB/s 

(CERN ATLAS: 1 GB/s) 

Not possible within CTA 
budget!

CTA Data Size Fermi Estimation



12

24th-25th Project Committee 4

Full waveform signal from 
photodetectors (Total 1314h): 
130 PB/year

3% full waveform 
signal, remaining signal 
integrated: 
21 PB/year

Central Trigger

Pixel integration 

Telescope Data rate Data rate 
(Central Trigger)

LST 110Gb/s 40Gb/s
MST 450Gb/s 150Gb/s
SST 60Gb/s 30Gb/s
Total 610Gb/s 220Gb/s

Telescope Data rate 
(sampled 
pixels)

Data rate 
(Integrated)

Total

LST 2.2Gb/s 8.6Gb/s 11Gb/s
MST 4.5Gb/s 15.5Gb/s 20Gb/s
SST 1Gb/s 4.1Gb/s 5.1Gb/s
Total 36 Gb/s

25/07/2017

Source: Nadine Neyroud, CTA PC meeting July 2017

≈ 30 GB/s

≈ 4.5 GB/sFinal estimate including 20% technical data: 
CTA North: 5.4 GB/s 
CTA South: 3.2 GB/s 
→ 40 PB/y, max  370 TB/day!



Karl KosackCTA Data processing

•
–
–

•

•

Daily data transfer duration/ Day of the year
24th-25th Project Committee 7

=> Additional data volume reduction factor of 10 on-site 
challenge: Compression, Event selection,…

25/07/2017

=> Required data volume 
reduction of 70 from Telescopes 
throughput to data to be 
transferred/archived

Constraints

Have to worry about: 
‣Budget (we aren't CERN) 

‣Off-site link: 1Gb/s 

‣Want to transfer data off-site in < 10 
days 

Result: need to reduce raw data to  
≈4 PB/year 
‣additional factor or 10x needed after 

trace integration (factor of 70x overall 
from pure raw data)

13

→ Some fraction of the data processing must occur 
on-site, and not all data can be retained



Karl KosackCTA Data processing

Note: Don't forget simulations!

Vast amount of Monte-Carlo data are 
needed to understand the system 
‣generate Instrumental Response 

Functions (IRFs) for science 

‣Train reconstruction algorithms 

Simulation data size is roughly equal 
to the raw data volume! 
‣both for "parameterized grid" or 

"runwise" simulations  

‣but:  

-all versions do not need to be 
maintained (can delete old files 
roughly yearly) 

-no MC data on-site (so no limit on 
transfer speed, only cost of storage)

14

2. Design and Prototyping 2.1 Design

Figure 2.9 – Data flow within the Monte-Carlo Production Pipeline. The intermediate data products (MC-Inter-*) may repre-
sent only streams passed between each module, or may be written to the MC archive temporarily or permanently, depending
on the use case or storage limitations.

2.1.2.9 Software Framework

The Pipelines software will share a common software framework that provides a basis for components,
tools, support libraries, I/O, and both tool-level and pipeline-level user interfaces. Since the on-line and
off-line pipelines have very different requirements for performance and e.g. integration with ACTL or the
archive, there exist 3 possibilities for implementation:

1. Use the same framework for both off-line and on-line pipelines, but add required functionality to
support on-line usage where necessary

2. use a somewhat different framework on-line and off-line, but share some components such as
algorithm and configuration.

3. use an entire different framework for on-line and off-line software

Case 1 is the most ideal and would reduce framework software maintenance, however it may be difficult
to realize given the differing requirements. Case 3 is a last resort and should be avoided if possible,
since it would mean having to duplicate much low-level functionality.

The software framework(s) should provide the following layers:

CTA Construction Project
CTA DATA TDR

Page 36 of 184 DATA-TDR/140513 | v.1.5 | 25 February 2016



Karl KosackCTA Data processing

Solution? 
We cannot store all data: need ≈70x reduction 
‣ lossless data compression: factor of 2x at least, maybe closer to 3x with 

novel techniques, better data formats, etc. 

‣ lossy data compression: 

-Drop "uninteresting" waveforms (and perhaps full pixel info), leaving 
only 3% of pixels on average with waveforms (typical image size) 

-sparse techniques to compress images or waveforms?  
(wavelets, curvelets, etc) 

-drop very hadron-like events  
(only gives factor of 2 or so, and adds complexity) 

Need to study implementation and science impact 
‣Real-time? Off-line + local data cache? 

‣How robust is the technique? Do we lose important info? What are the 
risks?  What can still be "reprocessed" later?

15



Karl KosackCTA Data Processing 

Data Processing In general

16



Karl KosackCTA Data processing

Data Levels: amount of processing

17

2. Data Naming Hierarchy

which may optionally contain sub-elements. Data names are case insensitive. Data names need not be
specified to the lowest level of the hiererchy.

These common data names may be used to:

• refer to data streams in architectural diagrams without ambiguity

• define interfaces and data models

• name data structures and APIs used in software like the pipeline or ACTL/DAQ

• identify tables and other elements inside output data files or databases

2 Data Naming Hierarchy

The following describes the hierarchical breakdown of data types within CTA. For each level in the
hierarchy, we provide a name, some guidelines of what data types it applies to, and if applicable the
suggested primary key or index used to identify repeated data within the same level is shown with
(indexed-by: key name). The indices shown here are used as examples only of the most common data
relationships and may not cover every use case; for further detail on data relationships, consult the full
CTA data model.

2.1 Data Processing Levels

The top level of the hierarchy is the data level, which represents the amount of data processing that has
been applied to the data (data at lower levels are more “raw”). The dominant data within each level is
also mentioned (usually EVT data, but MON and SVC data can also represent a significant volume). A
short name for each is also given in parentheses. Data levels R0-R1 are at the level of the hardware and
data acquisition software and are not intended for long-term storage, while level DL0-DL5 and intended
for archival storage.

Generally, the volume of data at a particular data level is equal to or smaller than that of the previous
level.

Data products in data levels are indexed generally by a timestamp (if unrelated to observations), obs id

(for observation-related data) or a higher-level grouping like a target name (for high-level combined data
products).

R0 (raw low-level) camera data transmitted from telescope to central servers. R0 content and format is
internal to each camera and is specified and coordinated between individual camera teams.

R1 (raw common) data output by an individual camera functional unit to the camera DAQ functional
unit. This is the first level of data seen by the ACTL system and is therefore as common as pos-
sible between all cameras/hardware. Exceptionally, some R1 data may be stored for engineering
purposes.

DL0 (raw archived) all archival data from the data acquisition hardware/software. This is the first level of
data that are stored in the bulk archive. This includes both camera event data and technical data
from other subsystems, such as non-camera devices or software.

CTA Construction Project
Data Model Definitions

Page 4 of 10 SYS-QA/160517 | v.1.1 | 02 June 2017

2. Data Naming Hierarchy 2.2 Data Multiplicity

DL1 (processed) processed DL0 data that may still include some TEL data and parameters derived
from them. For example this includes calibrated image charge, Hillas parameters, and a usable
telescope pattern. This is only optionally stored in the archive.

DL2 (reconstructed) reconstructed shower parameters such as energy, direction, particle ID, and related
signal discrimination parameters. At this point, no TEL information is stored. For each event this
information may be repeated for multiple reconstruction and discrimination methods. This is only
optionally stored in the archive. At this point, telescope-wise info is generally dropped.

DL3 (reduced) Sets of selected (e.g. gamma-ray candidates, electron candidates, selected hadron
candidates, etc.) events with a single final set of reconstruction and discrimination parameters,
along with associated instrumental response characterizations and any technical data needed for
science analysis.

DL4 (science) binned data products like spectra, sky maps, or light curves, along with associated data
(source models, fit results, etc).

DL5 (high-level) high-level or “legacy” observatory data, such as CTA survey sky maps or the CTA
source catalog.

2.2 Data Multiplicity

The data multiplicity identifier allows one to see how a particular data item is repeated.

OBS Data that pertains to the CTA observatory in general, independent of site or array.

ARR Data that pertains to an entire array/site. Examples include data from a common weather station,
databases related to the overall array layout, or calibrations that affect the full array or array site.
(indexed-by: array id)

SUB Data that may be repeated for each sub-array. Examples include the central sub-array trig-
ger1 data, reconstructed shower parameters, instrumental response functions, etc. (indexed-by:
subarray id)

TEL Data that may be repeated for each telescope. Examples include Cherenkov images, parameters,
etc. These are generally indexed by a telescope id number or telescope type. (indexed-by: tel id)
or (indexed-by: tel type)

2.3 Data Classification

The data classification further separates data by how it is used and updated. In each class, the rate
of data that is written and/or it’s validity range is different. This may imply or help to separate different
storage mechanisms for each class.

EVT (event) contains data that changes for every triggered event (e.g. a Cherenkov shower, calibration
trigger, etc.), with typically a high rate, which may be more than a kilohertz. For this reason, EVT
data may need special storage considerations. Examples include shower images/cubes, shower
parameters, calibration coefficients that are measured event-wise, and trigger information. This is
typically the highest volume data stream. (indexed-by: event id)

MON (monitoring) contains data that are used to monitor the status or quality of hardware, algorithms,
or other data, including slow-control information. These typically update at a periodic rate during
the operation of the array, or during on- or off-line data processing, at a rate typically much slower
than EVT data and faster than the length of a typical observation block. Examples would be slow-
control information like tracking positions, weather monitoring data, or the status of a particular
hardware or software component. (indexed-by: timestamp)

1also known as SWAT (SoftWare Array Trigger)

CTA Construction Project
Data Model Definitions

Page 5 of 10 SYS-QA/160517 | v.1.1 | 02 June 2017

MCs are somewhere 
here right now

Reconstructed Events 
(many reconstructions 

and parameters, no 
more telescopes)

Science Data: 
Classified Events 

(final reconstruction), 
IRFs

Pipeline starts here 
Will need to 

eventually produce 
data here to be 

compatible with "real" 
CTA data



Karl KosackCTA Data processing

Data Processing Pipeline

18

make event lists 
and IRFs

run science 
tools, detect 

sources, make 
sky plots, etc.

produce 
catalogs, diffuse 

models, etc

generate 
MC data

See the DATA TDR: 

2.1.2.3 Main Data Processing 
Pipeline Common Functional Design 

CEA, MPIK, LAPP, LUTH, INAF, IFEA, others 



Karl KosackCTA Data processing

Data Processing Pipeline

18

make event lists 
and IRFs

run science 
tools, detect 

sources, make 
sky plots, etc.

produce 
catalogs, diffuse 

models, etc

generate 
MC data

See the DATA TDR: 

2.1.2.3 Main Data Processing 
Pipeline Common Functional Design 

note not shown: 
various auxiliary calibration pipelines 

(run separately from main data processing)
CEA, MPIK, LAPP, LUTH, INAF, IFEA, others 



Karl KosackCTA Data processing

Main Data Processing Pipeline

19

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

Merge

Stage 2

Reconstruction 
direction + energy

Calculation of 
discrim 

parameters

Array Calibration

Stage 3

Progenitor 
Classification

Event Type 
Classification

IRF Generation & 
Cross Calibration

Stage 4

Residual 
Background 
Estimation

Imaging, Spectra, 
Lightcurve 
generation

Source detection

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

…

for each telescope, 
for each trigger

for each shower for each shower
for each set of 

observation blocks

note: stage 5 is then Catalog generation



Karl KosackCTA Data processing

Main Data Processing Pipeline

19

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

Merge

Stage 2

Reconstruction 
direction + energy

Calculation of 
discrim 

parameters

Array Calibration

Stage 3

Progenitor 
Classification

Event Type 
Classification

IRF Generation & 
Cross Calibration

Stage 4

Residual 
Background 
Estimation

Imaging, Spectra, 
Lightcurve 
generation

Source detection

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

…

for each telescope, 
for each trigger

for each shower for each shower
for each set of 

observation blocks

note: stage 5 is then Catalog generation



Karl KosackCTA Data processing

Stage 1: Per-telescope

20

…
calib + 

time integration de-noising parametrization

Readout

2nd CTA	Pipeline	Developer’s	Workshop
11th October	2016 9J.J.	Watson

examples/display_integrator.py
p examples/display_integrator.py -f {file.gz} -O hessio -t 1 --integrator 4



Karl KosackCTA Data processing

Stage 1: Per-telescope

20

…
calib + 

time integration de-noising parametrization

Readout

2nd CTA	Pipeline	Developer’s	Workshop
11th October	2016 9J.J.	Watson

examples/display_integrator.py
p examples/display_integrator.py -f {file.gz} -O hessio -t 1 --integrator 4



Karl KosackCTA Data processing

Stage 2: Reconstruction

21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin + 
Energy + Classification 

parameters



Karl KosackCTA Data processing

Stage 2: Reconstruction

21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin + 
Energy + Classification 

parameters



Karl KosackCTA Data processing

Stage 2: Reconstruction

21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin + 
Energy + Classification 

parameters

Note: 
More advanced techniques exist and are being implemented) 

(generally with higher CPU requirements and data needs)



Karl KosackPIPELINES

Extensions to basic method

22

How to Reconstruct an Event

Algorithm 3 Algorithm 4

(a) (b)

(d)(c)

Fig. 2. Illustration of different techniques to determined the shower direction from multiple Cherenkov
images. (a) Intersecting pairs of image axes, followed by an averaging over intersection points. (b) In-
tersecting image axes taking into account the errors on image location and image orientation, resulting
in an error ellipse for the image of the source. (c) Using in addition the width/length-ratio to constrain
the source image to two regions on either side of an image. (d) Optimizing the shower geometry such
that the predicted image axes best match the observed images.

square with roughly 100 m side length. A fifth telescope at the remaining corner was integrated
into the system in 1998. The telescopes are identical, equipped with 8.5 m2 mirrors with 5 m
focal length, and with 271-pixel cameras with a diameter of the field of view of 4.3◦, and an
equivalent pixel size of 0.25◦. Detailed about the hardware and the data analysis can be found
in [1–3,12].

The trigger condition for individual telescopes requires a coincidence of two pixels above a
threshold of 10 photoelectrons (before June ‘97) or 8 photoelectrons (after June ‘97). For typical
gamma-ray images, cameras trigger once the image has more than about 40 photoelectrons.
The HEGRA IACT system as a whole is triggered and data are recorded whenever at least two
telescopes trigger in coincidence (see [2] for details on the trigger system).

In the design of the HEGRA cameras and their electronics, an important aspect was that
one wanted to read out not only those telescopes which had triggered, but also the remaining
telescopes, which will shower fainter, but frequently still usable images. Camera signals are

5

Use Hillas parameters to estimate displacement of the source position from the 
image centre of gravity (disp method). Can be done analytically or iteratively  

Use errors on single-telescope prediction
use global minimization 

(current test show no significant 
improvement over a good 

weighting scheme)



Karl KosackPIPELINES

Model Fit Real Image Residuals

Template Model Reconstruction

Build model from 
full monte-carlo 
simulations 
‣N-dimensional 

data-cube 

‣E, position, 
direction 

Simultaneously 
fit all shower 
images to model

23

Image Model

)° (
camX

-2
-1.5

-1 -0.5
0

0.5)° (
cam

Y

-0.4
-0.2

0
0.2

0.4
0

2000
4000

6000

8000
10000

12000
14000

)° (
camX

-2
-1.5

-1 -0.5
0

0.5)° (
cam

Y

-0.4
-0.2

0
0.2

0.4
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

)° (
camX

-2
-1.5

-1 -0.5
0

0.5)° (
cam

Y

-0.4
-0.2

0
0.2

0.4

0
200
400
600
800

1000
1200
1400
1600

)° (
camX

-2
-1.5

-1 -0.5
0

0.5)° (
cam

Y

-0.4
-0.2

0
0.2

0.4
0

2000
4000
6000
8000

10000
12000
14000

1 TeV Gamma-ray @

20 m impact, 300 g/cm2 Xmax 100 m impact, 300 g/cm2 Xmax

200 m impact, 300 g/cm2 Xmax 100 m impact, 400 g/cm2 Xmax

e.g. ImPACT, Model++ 

D. Parsons



Karl KosackPIPELINES

3D Model Reconstruction

Model shower as 3D object 
(e.g. Gaussian) 
‣position, direction, energy as 

parameters 

Project shower image into 
cameras 

Simultaneously fit real images 
to model 

No model datacube needed, 
but model much more 
simplistic

24



Karl KosackPIPELINES

performance  
evaluation

Basic Machine Learning

25

Training Data 
features

Test Data 
features

Real Data 
features

Machine Learning 
 Algorithm 

Classifier: discrete types 
 or 

 Regressor: continuous variable

train
predict

Performance 
Metrics

test 
class or 
value

predict

"hadronness", 
"energy", 

etc.
class or value

Training Verification Prediction



Karl KosackCTA Data processing

Stage 3: Progenitor Discrimination

26

parameters particle class

gamma-like

hadron-like

electron-like

per-image 
parameter sets 

(width, length, …)
per-shower 
parameters 

(impact distance, 
energy, number of 

tels, …)

Note: Also event quality classification, e.g. good PSF, 
good spectral resolution, sensitivity to unknown 

sources, … 

as many 
"features" as 

possible

2-stage machine learning: per-telescope 
prediction → per-shower prediction



27

Shower Reconstruction – Classification
Results

Tino Michael (CEA Saclay) CTA group meeting 2017-06-15 10 / 13

Discrimination

using RandomForestClassifier implemented in scikit-learn
data-mining approach: just throw all the data at it that we have

distance between telescope reconstructed impact position
error estimate on the impact position
Hillas parameters: width, length, skewness, kurtosis
total signal on camera
signal of the pixel with the highest count
total signal on all selected telescopes
number of selected telescopes

for now, cut on NTels > 2 & gammaness > 0.75

Tino Michael (CEA Saclay) to recap my workflow 2017-04-20 4 / 11

T. Michael



Karl KosackPIPELINES

Stage 2: Energy Reconstruction

Several methods: 
‣Basic lookup-table as 

function of integrated 
signal + impact 
parameter 

‣Machine-learning 
Regression 
 (currently used) 

-hillas parameters, 
reconstruction 
parameters, number of 
telescopes, etc 

-Predict per telescope 
and then combine

28

Shower Reconstruction – Gamma Energy
Results

Tino Michael (CEA Saclay) CTA group meeting 2017-06-15 8 / 13

T. Michael



Karl KosackCTA Data processing

Output: Science Data

29

event_i
d

n_tels RA DEC E class …
1 5 23.3 -40.1 0.01 g

2 34 24.6 -40.5 20.0 g

3 3 23.5 -41.12 0.45 g

4 4 21.3 -38.2 1.03 h

Event-List

Instrumental Responses:

Effective Area

Energy Migration

PSF

(note these are not CTA 
responses, just examples)



Karl KosackCTA Data processing

Output: Science Data

29

event_i
d

n_tels RA DEC E class …
1 5 23.3 -40.1 0.01 g

2 34 24.6 -40.5 20.0 g

3 3 23.5 -41.12 0.45 g

4 4 21.3 -38.2 1.03 h

Event-List

Instrumental Responses:

Effective Area

Energy Migration

PSF

(note these are not CTA 
responses, just examples)

Response matrices are in general functions of: 

Position in FOV, 
Energy, Observation Parameters (Subarray used , Zenith angle, Azimuth angle, night-sky-brightness, …), Analysis parameters (algorithm used, event selection) 

Up to 10+ dimensions if no assumptions are made 
Many studies needed to understand the best factorization!



Karl KosackCTA Data processing

Stage 4: Automated Science

30

Science Tools Custom Tools for Real-Time 
science and alert 

generation (on-site)

Produce preliminary results for proposal monitoring and alerts



Karl KosackCTA Data processing

Stage 4: Automated Science

30

Science Tools Custom Tools for Real-Time 
science and alert 

generation (on-site)

Produce preliminary results for proposal monitoring and alerts



Karl KosackPIPELINES

What will be done for CTA?
Multi-"pass" data production (like Fermi) 
‣All data re-processed with latest validated/verified techniques (reco, 

calibration) ≈ yearly 

‣New DL3 data disseminated, 

Starting point: 

‣basic Hillas Analysis  (good enough to reproduce all CTA requirements).  First 
data release will likely be only this! 

Future Improvements:  
‣Divide events into classes (with each their own IRF) 

-by which telescopes are triggered 
-by reco technique used (may be more than one) 
-etc. 

‣Fancier image cleaning 

‣Fancier reconstruction

31



Karl KosackCTA Data Processing 

Implementing a Data 
Processing Pipeline

32



Karl KosackCTA Data processing

Developers in CTA

Developers: 
‣ few in number (so far) 

‣diverse in skill and background, generally non-professionals 

‣ located all around the world 

‣May pay some professionals for code review and guidance, however 

Development constraints: 
‣want rapid development cycle 

‣Need strict versioning and release of product and related 
dependencies 

‣Need quality control and validation testing (automated as much as 
possible) 

33



Karl KosackCTA Data processing

C/C++

Building a Framework for the Pipeline

        Bottom-Up approach             Top-Down approach

34

Python
Python

C/C++

Numba, 
Cython

Most previous frameworks 
did it this way

Our approach: start early 
with python and high-level 

API

start 
here

start 
here



Karl KosackCTA Data processing

C/C++

Building a Framework for the Pipeline

        Bottom-Up approach             Top-Down approach

34

Python
Python

C/C++

Numba, 
Cython

Most previous frameworks 
did it this way

Our approach: start early 
with python and high-level 

API

start 
here

start 
here



Karl KosackCTA Data processing

C/C++

Building a Framework for the Pipeline

        Bottom-Up approach             Top-Down approach

34

Python
Python

C/C++

Numba, 
Cython

Most previous frameworks 
did it this way

Our approach: start early 
with python and high-level 

API

start 
here

start 
here

 This came out of large study 
of existing frameworks 

 (HESS, MAGIC, VERITAS, 
IceCube, Fermi-LAT, …) 

And user- and developer-
experience



Karl KosackCTA Data processing

ctapipe: data processing prototype

35

ctapipe 
package/framework

GitHub TravisCI
repository 

issue tracker
continuous integration

github.com/cta-observatory/ctapipe

Sphinx
documention

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

ctapipe: data processing prototype

35

EventIO, TargetIO, etc

ctapipe 
package/framework

iminuit

GitHub TravisCI
repository 

issue tracker
continuous integration

github.com/cta-observatory/ctapipe

Sphinx
documention

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

ctapipe: data processing prototype

35

EventIO, TargetIO, etc

ctapipe 
package/framework

algorithms 
(python and 

cython)

wrapper

algorithms 
(C/C++)

iminuit

GitHub TravisCI
repository 

issue tracker
continuous integration

github.com/cta-observatory/ctapipe

Sphinx
documention

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

ctapipe: data processing prototype

35

EventIO, TargetIO, etc

ctapipe 
package/framework

algorithms 
(python and 

cython)

pipeline  
tools 
(batch 

executables)

advanced 
pipeline 

applications 
(online, streaming, 
DAQ interface, …) 

wrapper

algorithms 
(C/C++)

iminuit

GitHub TravisCI
repository 

issue tracker
continuous integration

github.com/cta-observatory/ctapipe

Sphinx
documention

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

ctapipe: data processing prototype

35

EventIO, TargetIO, etc

ctapipe 
package/framework

algorithms 
(python and 

cython)

pipeline  
tools 
(batch 

executables)

advanced 
pipeline 

applications 
(online, streaming, 
DAQ interface, …) 

wrapper

algorithms 
(C/C++)

Conda Package  
 + Virtual Env containing 

fixed versions of all 
dependences (compiler / 

python interpreter included)

release & 
deployment

iminuit

GitHub TravisCI
repository 

issue tracker
continuous integration

github.com/cta-observatory/ctapipe

Sphinx
documention

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

ctapipe status
ctapipe:  python/C++ based data processing framework 

What's there now: 

‣Basic Calibration & Trace-Integration for all cameras  
(several methods available) 

‣Cherenkov Image Processing for all camera geometries  
(Hillas + Wavelet so far), including Muon analysis 

‣Stereo Reconstruction  
(plane-intersection + ImPACT model so far) 

‣Event Classification & Discrimination 

‣Sensitivity Curve Calculation 

‣Visualizations at each level 

‣Basic data I/O and provenance tracking 

Can be run on the CTA Grid (releases in virtual envs in 
CVMFS) 

Will be phased in to replace existing MC studies this year 

Also used by several camera groups for testbed  
(GATE, DigiCam)

See: github.com/cta-observatory/ctapipe for more info

Working successfully,  

Smallish team (<20 
developers, only ≈5 
very active), and all 
basic features done 
after about 1 year of 

work 

Still lots of 
development to go

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

Workflow Management
Pipeline must be executed on distributed computing systems 
(EGI Grid, etc).  
‣may be broken in to many steps and parallelized in various ways 

‣ implies complex job management, job dependency tracking, 
monitoring 

‣may be simple batch system or more complex big-data solution 

Current prototype: 
‣DIRAC middleware with custom CTA front-end  

-used for Monte-Carlo successfully 
-complex data-driven workflows are still experimental 

‣Some "big-data" systems (Spark, Storm, etc) being tested for possible 
use on-site 

37



Karl KosackCTA Data processing

The challenge
Conceptually, data processing is well understood and we have several 
reference implementations… 

What is more difficult is verification and quality: 
‣does the real instrument perform as simulated? 

‣Which algorithms are the most sensitive and least affected by systematics? 

‣How can be better understand/mitigate the effects of atmospheric variation? 

‣how to deal with data and hardware problems? 

-MCs have no non-uniform NSB, stars, non-working pixels 
-from experience: lots of unexpected things to learn about the hardware, even 10 

years after start!  
-Bright sources (low hanging fruit) less affected, but start to see issues when we 

do deep observations (e.g. Key Science Projects!)  

This will be the bulk of the data processing work!  
Need lots of help.

38



Karl KosackCTA Data Processing 

Making a coherent system: 
CTA Architecture Modeling

39



Karl KosackCTA Data processing

Why make an architectural model?

Connect Requirements to Design 
‣don't build something unnecessary 

‣don't forget something important 

Define Common View of full system 
‣clear boundaries and responsibilities 

‣coherent interfaces 

‣define scoping and responsibilities (work packages) 

‣explore staging scenarios 

‣estimate effort and complexity

40



Karl KosackCTA Data processing

Architecture Team

41

Central Architecture Team

Team formed by CTAO gGmbH following Architecture Plan

• Team Leader: M. Füßling (CTAO)
• Primary Stakeholder Representative: J. Hinton (MPIK, CTAO)
• Architecture Consultant: L. Hagge (DESY)
• Modeling Expert: I. Oya (DESY)
• Additional CTA Experts: K. Kosack (CEA), N. Neyroud (CNRS), 

G. Tosti (INAF)
• CTAO Systems Engineers: F. Dazzi and A. Mitchell.
• External Consultants: A. Morgenstern (IESE), D. Rost (IESE) 

5



Karl KosackCTA Data processing

CTA System Context

42Source: Matthias Füßling, CTA architecture team

Context of the CTA Observatory System

9

CTA as a black box



Karl KosackCTA Data processing

Process Modeling

43

Example Process

• Processes are decomposed to activities 
and actions
– Actions are either performed by one 

system (automatically), by one person 
(without any system involvement), 
or by one person with support of a 
single system

11

Process «Activity»
Activ ity

«Action»

Action

Source: Matthias Füßling, CTA architecture team



Karl KosackCTA Data processing

Defining Systems

44

System Description

13

Functionality

Users

Context

Decomposition
Data

Source: Matthias Füßling, CTA architecture team



Karl KosackCTA Data processing

Inside the box

45

System Structure View – Bulk Data Flow

• s

15

Source: Matthias Füßling, CTA architecture team



Karl KosackCTA Data processing

Next steps before construction

‣High-level systems will replace current working 
packages 

‣ IKC agreements for systems and subsystems 

‣ internal model for each System, by each work 
package 

‣ Identify groups/institutes to produce each sub-
system 

‣ implementation!

46



47

Extra info, if there is time: 



Karl KosackCTA Data Processing 

Modern Development 
Practices: 

How to maintain and produce good code

48



49

Programming Standards

This Version:

Ver. Created Comment Distribution Corresponding...

0.2 2017-08-27 Incorporated first round of
comments from PC

PC Editor:
Checker:
Approver:

SQG (see author list)

Keywords:

Standards, Software Implementation, Languages, Operating Systems, Libraries.

Version History:

Ver. Date Comment Distribution Corresponding...

0.1 2016-09-06 Preliminary draft originally in-
corporated into the Software
Development Plan & Stan-
dards.

PC Editor:
Checker:

SQG
PC

CTA Construction Project
Programming Standards

Page 1 of 18 SYS-STAND/161012 | v. 0.2 | 27 August 2017

Table of Contents

Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Computing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Code Style Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Code Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Code Documentation and Comments Standards . . . . . . . . . . . . . . . . . . . . . . . 11

4 Development Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Compilers, Interpreters, and Runtime Environments . . . . . . . . . . . . . . . . . . . . . 12
4.2 External Libraries and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Version Numbering and Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CTA Construction Project
Programming Standards

Page 3 of 18 SYS-STAND/161012 | v. 0.2 | 27 August 2017

Software Development Plan

This Version:

Ver. Created Comment Distribution Corresponding...

0.2 2017-08-27 Insertion of: a) -. Update of:
I) style figures and tables; II)
reorganization of the sections.

PC Editor:
Checker:
Approver:

SQG (See C)

Keywords:

Software, Development Models, Architecture, Standards, Protocols, Languages.

Version History:

Ver. Date Comment Distribution Corresponding...

0.1 2016-05-11 Main structure & preliminary
draft.

PC Editor:
Checker:

SQG
PC members

CTA Construction Project
Software Development Plan

Page 1 of 50 SYS-PLANS/160606 | v. 0.2 | 27 August 2017

Table of Contents

Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Software Management and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Software Engineering Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Phases and Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Software Requirements and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Approach towards an integrated CTA Software Architecture . . . . . . . . . . . . . . . . . 14

4 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Software Development Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Practical Advice for Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Detailed Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Software Integration and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Software Configuration Management (Revision Control) . . . . . . . . . . . . . . . . . . . 20
4.7 Shared Development Support Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Software Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Software Product Assurance Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Software Process Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Software Product Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Software Verification, Validation and Acceptance . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Software Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Software Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Software Delivery and Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Software Early Operation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1 Early Operations Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Early Maintenance Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Development Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CTA Construction Project
Software Development Plan

Page 2 of 50 SYS-PLANS/160606 | v. 0.2 | 27 August 2017

CTA SYS group and PO are preparing 
detailed guidelines for software in CTA



Karl KosackCTA Data processing

Code development

Required for Merging Pull-Request 
into master: 
‣Code review by somebody other than 

submitter 

‣all tests pass 

‣code quality stays same or increases

50

code peer reviewsGitHub-Flow dev model

Issues and Pull-Requests from 
developer forks

github.com/cta-observatory/ctapipe

This requires many 
experts that are 

currently lacking! 

http://github.com/cta-observatory/ctapipe


Karl KosackCTA Data processing

Continuous Integration

51

Not just "does it compile?",  
but "does it (still) work?"

note: a CTA software requirement to have this 
existing code must also add a unit test suite

TravisCI

Unit and Regression Testing, Documentation deployment

Not quite sufficient: Travis only 
supports Ubuntu Linux VM, we 

need a true CTA software 
integration system



Karl KosackCTA Data processing

Documentation

52

e.g. https://cta-observatory.github.io/ctapipe/ 
regenerated automatically on commits/merges to upstream master  

→ Always up-to-date and in sync with code!

https://cta-observatory.github.io/ctapipe/


Karl KosackCTA Data processing

Code Quality Monitoring

landscape.io 
‣  open-source, free cloud system for open-source projects 

‣Integrates with GitHub (or GitLab) and can be used to block bad code 
from being committed.

53

http://landscape.io


Karl KosackCTA Data processing

Deployment

Anaconda cross-platform package manager 
‣build "conda" packages for each module (mac + linux) 

‣handles dependencies and virtual-environments that 
are self-contained for each release 

‣ locally-installed virtual envs on CTA Grid in CVMFS 
shared filesystem 

‣packages currently hosted on Anaconda Cloud in cta-
observatory channel  

-again only for public software, but can host our 
own private channel locally (no resources for that 
currently!) 

$ conda env create -n cta-v1 python=3.6
$ source activate cta-v1
$ conda install -c cta-observatory ctapipe=0.5

54



Karl KosackCTA Data processing

Deployment

Anaconda cross-platform package manager 
‣build "conda" packages for each module (mac + linux) 

‣handles dependencies and virtual-environments that 
are self-contained for each release 

‣ locally-installed virtual envs on CTA Grid in CVMFS 
shared filesystem 

‣packages currently hosted on Anaconda Cloud in cta-
observatory channel  

-again only for public software, but can host our 
own private channel locally (no resources for that 
currently!) 

$ conda env create -n cta-v1 python=3.6
$ source activate cta-v1
$ conda install -c cta-observatory ctapipe=0.5

54



Karl KosackCTA Data processing

Final remarks

Lots of software under 
development and to be 
developed for CTA! Only touched 
on some here… 

A few places where people are 
needed (probably lots more): 

‣Data Volume Reduction: 

- needs a dedicated team to study and 
implement 

-Some work started (e.g. LAPP) 

‣Data Pipeline:  

-algorithm study and development 
-good coders to help with code quality 

and design 

-develop data quality monitoring 
techniques 

-verification of algorithms, simulations, 
and calibration (a continuous effort) 

-parallelization and speed 
-study factorization of IRFs to improve 

science results (event classes, etc) 

‣Monte-Carlo:  

-configuration builder,  
-improve algorithms and software 
-implement "runwise" Monte-Carlo to 

simulate real observation conditions 

‣Science Tools: 

-verification and monitoring of science 
results 

-development of better algorithms 

‣ Infrastructure: 

-Common database system  and 
interface for instrumental 
configuration  (used by pipeline, MCs, 
array control, hardware teams)

55


