

pace Telescope

Fermi Analysis

Benoit Lott Centre d'Etudes Nucléaires de Bordeaux-Gradignan lott@cenbg.in2p3.fr

ົ ° (0 (0 (0) 9000 ...

Outline

The Fermi Large Area Telescope (LAT)

Highlights

Performance

LAT data

Standard analysis

Compton Observatory / EGRET legacy

April 5, 1991 – June 4, 2000

3rd EGRET catalog 271 sources

Dermi

Gamma-ray Space Telescope

- ♦ AGN blazars (70)
- unidentified
- Pulsars (7)
- LMC

X25 lower sensitivity than Fermi LAT

The Large Area Telescope on board the Fermi satellite (launch: June 11, 2008)

incoming gamma ray

e⁻*e*⁺*pair*

June 11, 2008 Launch from Cape Kennedy altitude: 565 km inclination: 25.6° orbital period: 91 min

The Fermi LAT

Public Data Release: All γ-ray data made public within 24 hours (usually less) Fermi LAT Collaboration: ~400 Scientific Members, NASA / DOE & International Contributions

Si-Strip Tracker: convert γ->e⁺e⁻ reconstruct γ direction EM v. hadron separation

Hodoscopic Csl Calorimeter: measure γ energy image EM shower EM v. hadron separation

Anti-Coincidence Detector: Charged particle separation

Sky Survey: With 2.5 sr Field-of-view LAT sees whole sky every 3 hours

Trigger and Filter: Reduce data rate from ~10kHz to 300-500 HZ

Tracker

18 bi-layers, (x,y planes)

12 Layers thin (0.03 X₀) Tungsten 4 Layers thick (0.12 X₀) Tungsten 2 Layers no Tungsten

Thickness: 400μm, Pitch 256 μm Point Resolution ~ pitch / sqrt(12)

Photons gamma dans le LAT

Gamma-ray

Les croix vertes indiquent les positions détectées des particules chargées, les lignes bleues indiquent les trajectoires reconstruites à partir des traces, et la ligne jaune montre la direction estimée du photon gamma. Les croix rouges indiquent les dépôts d'énergie détectés dans le calorimètre. **Atelier CTA Oct. 2017**

Novel features

The Fermi-LAT allows for unprecedented studies about

- morphology
- spectra
- variability

in the GeV band

Fermi highlights and discoveries

9-year sky map

E>1 GeV

4 years of data, 3031 sources

7 years of data, 1556 sources

Atelier CTA Oct. 2017

Gamma-ray Space Telescope

Source catalogs

Catalog	Energy Range (GeV)	Data Interval (m)	Sources	Unasso- ciated	Event Selection	Release Date
0FGL	0.2-100	3	205	37 (18%)	P6V1 DIFFUSE	Feb. 2009
1FGL	0.1-100	11	1451	630 (43%) P6V3 DIFFUSE		Feb. 2010
2FGL	0.1-100	24	1873	649 (35%)	P7V6 SOURCE	Aug. 2011
1FHL	10-500	36	511	65 (13%)	P7V6 CLEAN	Jun. 2013
3FGL	0.1-300	48	3031	992 (33%)	92 (33%) P7V15 SOURCE	
2FHL	50-2000	80	360	48 (14%)	P8 SOURCE	Aug. 2015
3FHL	10-2000	84	1556	176 (11%)	P8 SOURCE	Mar. 2017
4FGL	0.1-1000	96	~7500	~2500(30%)?	P8 SOURCE	Jan. 2018?

Fermi data reveal giant gamma-ray bubbles

Age: a few millions years Remnant of a jet ? Intense episod of star formation? Fusion of a secondary black hole? Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

Excess around Galactic Center

Atelier CTA Oct. 2017

) erm

Pulsars

Summary Statistics

Gamma-ray Space Telescope

Total number of pulsars: 20510⁻¹³Young, radio selected : 5310⁻¹⁴Young, gamma selected : 5410⁻¹⁵Young, X-ray selected : 510⁻¹⁶Total number young PSRs : 11210⁻¹⁸MSP, radio selected : 9210⁻¹⁹MSP, gamma selected : 110⁻²⁰Total number of MSPs : 9310⁻²¹Total number of binaries : 7310⁻²¹Found in radio searches of LAT sources : 54EGRET/COMPTEL pulsars: 7

Shell SNRs

Hewitt14 Atelier CTA Oct. 2017

Search for dark matter

Charles, E. et al. 2016, Phys. Rep., 636, 1

More highlights

Search for Transients

continuous sky survey

- >400 ATels
- Flare Advocates
- FAVA

Some recent examples

Fermi LAT Detection of a New Gamma-ray Source Associated with FSRQ CRATES J0944+6135

ATEl #106PC, R. Angloni (MPITH: Bann). S. Bioson WASA GSPC), C. C. Cheung (NBU), E. Biosathi (Polucenico & DNEN Barly as bokulf of the Formi Large Area Tolescope Collaboration on 2 Sep 3017; 61:69 UT Ordential Carlifecture: Sara Suran (pure buson@gmail.com)

Subjects: Gamma Ray, Request for Observations, AGN, Blazar, Quasar

Fermi and Swift discovery of GeV gamma-ray and X-ray emission from the blazar S4 0444+63

ATel #10584; Stefano Ciprini (SSDC-ASI & INFN, Italy) on behalf of the Fermi Large Area Felescope Collaboration. on 20 Jul 2017; 12:12 UT

Credential Certification: Stefano Ciprim (stefano ciprim@asdc.ast.u)

Subjects: X-ray, Gamma Ray, >GeV, Request for Observations, AGN, Blazar, Quasar

Fermi LAT detection of a bright GeV gamma-ray flare from the FSRQ 3C 345

ATel #10453; Stefano Ciprini (ASI SSDC Rome & INFN); Saru Buson (VASA-GSFC) on behalf of the Fermi Large Area Telescope Collaboration on 2 Jun 2017; 17:50 UT Ovdential Certification: Stefano Ciprini (Stefano, ciprini(Basdo asi 11)

Subjects: Gamma Ray, >GeV, Request for Observations, AGN, Black Hole, Blazar, Quasar

Referred to by ATel # 10456

Gamma-ray emission from Cygnus X-3 detected by Fermi/LAT at the onset of a major radio flare

ATel #10243; Akan Loh (LESIA, Paris Observatory) & Stephane Corbel (DAP-AIM, CE4, Paris Didevet University), on hehalf of the Fermi Large Area Telescope Collaboration on 4 Apr 2017; 12:15 UT Oredenital Certification: Alan Loh (alan.loh.up7(@gmail.com)

Subjects Radio, X-ray, Gamma Ray, >GeV, Request for Observations, Black Hole, Transient

Referred to by ATel # 10253

Fermi LAT detection and Swift X-ray follow-up of a new gamma-ray/X-ray transient source Fermi J1544-0649 (Swift 154419.7-064915)

ATel #10482; S. Ciprini (ASJ/SSDC Rome and ENFN), C. C. Cheung (Navai Research Laboratory), D. Koczewski (NASA/MSFC), J. Chiang (SIAC) on behalf of the Fermi Large Area Telescope Collaboration; S. N. Shore (U. Pisa and ENFN) on 11 Jun 2017; 10:33 UT Credenbal Certification: Exfano Ciprini (Stefano ciprini(Gazdc.axi 0)

Subjects: Ultra-Violet, X-ray, Gamma Ray, >GeV, AGM, Black Hole, Blazar, Caraclysmic Variable, Transient, Tidal Disruption Event

Referred to by ATel # 10491, 10495, 10642

Swift, Loiano and LCOGT observations of ASASSN-17gs/AT2017egv (Fermi J1544-0649) - awakening of a dormant high-energy peaked blazar?

ATel #10642, K. Sokolovsky (IAASARS NOA/ASC Lebedev/SAI MSU), F. Cusano (D/AF-OAE6), M. Dominik (University of St Andrews), S. Hodgkin (IoA/Cambridge), K. A. Rylicki, I. Wyrythewski, M. Gromadyki, A. Hamanowicz, (Warasa Ohservatory), T. W.-S. Holsian (Ohio State) and S. Ciprini (SSDC-ASI Rome and D/F24), C. C. Chenny (Neval Research Laboratory), on behalf of the Fermi LAT Collaboration on 15 Aug 2017; 14:11 UT

Credential Certification: Extill Sokolovsky (kirs@scan sai.nsu ru)

Subjects: Optical, Ultra-Violet, X-ray, Request for Observations, AGN, Black Hole, Blazar, Quasar, Supernovae, Transient, Tidal Disruption Event

Fermi LAT Detection of a New Gamma-ray Source Associated with PMN J2322-0736

ATel #10326, C. C. Cheung (NRI), S. Ciprini (ASI SSDC Rome & INFN Perugia), D. Kocevski (NA8A/MSFC), S. Buson (NA8A/GSFC), on behalf of the Formi Large Area Telescope Collaboration on 28 Apr 2017; 15:19 UT Credential Certification. Teddy Cheurg (coleang@milkqueuy gsfc.nasa gov)

Subjects: Gamma Ray, >GeV, AGN, Ellazar

Performance

Event classes/types

https://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_essentials.html https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/

Tradeoff between statistics and residual-background contamination

P8R2 IRF name	Event Class (evclass)	Class Hierarchy	Photon File	Extended File
P8R2_ULTRACLEANVETO_V6	1024	Standard	х	Х
P8R2_ULTRACLEAN_V6	512	Standard	X	Х
P8R2_CLEAN_V6	256	Standard	x	X
P8R2_SOURCE_V6	128	Standard	х	Х
P8R2_TRANSIENT010_V6	64	Standard		Х
P8R2_TRANSIENT020_V6	16	Standard		Х
P8R2_TRANSIENT010E_V6	64	Extended		Х
P8R2_TRANSIENT020E_V6	8	Extended		Х
P8R2_TRANSIENT015S_V6	65536	No-ACD		Х

Different partitions of data according to:

- conversion type
- PSF
- energy dispersion

P8R2 Event Type Name	Event Type Partition	Event Type Value (evtype		
FRONT	Conversion Type	1		
BACK	Conversion Type	2		
PSF0	PSF	4		
PSF1	PSF	8		
PSF2	PSF	16		
PSF3	PSF	32		
EDISP0	EDISP	64		
EDISP1	EDISP	128		
EDISP2	EDISP	256		
EDISP3	EDISP	512		

Effective area (Aeff)

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

Dermi

Gamma-ray Space Telescope

Point Spread Function (PSF)

Atelier CTA Oct. 2017

Gamma-ray Space Telescope

Energy resolution

∆E/E vs Energy

 $\Delta E/E$ vs Incidence angle

LAT data

Downloading data

https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi

Natic Godda	onal Aeronautics and Spac ard Space Flight Center	e Administration	Fermi • FSSC • HEASARC Sciences and Exploration			
Fermi Science Suppor	t Center					
Home Observatio	ons Data Pro	posals Library HE	EASARC Help Site Map			
Data	LAT Photon,	Event, and Spacec	raft Data Query			
Data Policy	Object name or coordinates					
Data Access + LAT Data + LAT Catalog + LAT Catalog	Coordinate system: Search radius (degrees):	32000 ▼	Index of /FTP/fermi/da	ta/lat/week	ly/p	hoton
+ LAT Query Results	Observation dates:		Name	Last modified	<u>Size</u>	Description
+ GBM Data	Time system:	Gregorian 🔻	Parent Directory			
Caveats	Energy range (MeV):		lat photon weekly w009 p302 v001.fits	s 03-Apr-2015 16:24	17M	
• Newsletters	LAT data type:	Photon 🔻	lat photon weekly w010 p302 v001.fits	3 03-Apr-2015 16:32	57M	
► FAQ	Spacecraft data:		lat photon weekly w011_p302_v001.fits	3 03-Apr-2015 16:41	55M	
	Start Coarch Bocot		lat_photon_weekly_w012_p302_v001.fits	<u>3</u> 03-Apr-2015 16:50	60M	
	Start Search Reset		lat_photon_weekly_w013_p302_v001.fits	3 03-Apr-2015 16:59	58M	
	IMPORTANT! The data serve	r is now serving Pass 8 (P8R2) data. Clic	Lat_photon_weekly_w014_p302_v001.fits	3 03-Apr-2015 17:10	58M	
	Recommendations, and Cave	ats that are necessary for analyzing these da	Lat photon_weekly_w015_p302_v001.fits	3 03-Apr-2015 17:19	56M	
			lat_photon_weekly_w016_p302_v001.fits	3 03-Apr-2015 17:27	55M	
			lat_photon_weekly_w017_p302_v001.fits	<u>6</u> 03-Apr-2015 17:36	82M	
			lat_photon_weekly_w018_p302_v001.fits	<u>03-Apr-2015</u> 17:45	58M	
			Lat_photon_weekly_w019_p302_v001.fits	03-Apr-2015 17:53	58M	
Atelier CTA Oct	. 2017		Lat photon weekly w020 p302 v001.fits	3 03-Apr-2015 18:02	60M	
			Lat_photon_weekly_w021_p302_v001.fits	03-Apr-2015 18:12	57M	

Data cuts

Event Selection Recommendations (P8R2)

Cut on zenith angle to reduce earth-limb background

Analysis Type	Minimum Energy (emin)	Ainimum Maximum Energy Energy emin) (emax)		Event Class (evclass)	IRF Name
Galactic Point Source Analysis	100 (MeV)	500000 (MeV)	90 (degrees)	128	P8R2_SOURCE_V6
Off-plane Point Source Analysis	100 (MeV)	500000 (MeV)	90 (degrees)	128	P8R2_SOURCE_V6
Burst and Transient Analysis (<200s)	100 (MeV)	500000 (MeV)	100 (degrees)	16	P8R2_TRANSIENT020_V6
Galactic Diffuse Analysis	100 (MeV)	500000 (MeV)	90 (degrees)	128	P8R2_SOURCE_V6
Extra-Galactic Diffuse Analysis	100 (MeV)	500000 (MeV)	90 (degrees)	1024	P8R2_ULTRACLEANVETO_V6
Impulsive Solar Flare Analysis	100 (MeV)	500000 (MeV)	100 (degrees)	65536	P8R2_TRANSIENT015S_V6

Time Selection Recommendations

Analysis Type	ROI-Based Zenith Angle Cut (roicut)	Relational Filter Expression (filter)
Galactic Point Source Analysis	no	(DATA_QUAL>0)&&(LAT_CONFIG==1)
Off-plane Point Source Analysis	no	(DATA_QUAL>0)&&(LAT_CONFIG==1)
Burst and Transient Analysis	yes	(DATA_QUAL>0)&&(LAT_CONFIG==1)
Galactic Diffuse Analysis	no	(DATA_QUAL>0)&&(LAT_CONFIG==1)
Extra-Galactic Diffuse Analysis	no	(DATA_QUAL>0)&&(LAT_CONFIG==1)
Burst and Transient Analysis	yes	(DATA_QUAL>0 DATA_QUAL==- 1)&&(LAT_CONFIG==1)

The Fermi-LAT data

Type

Image

Binary

Extension

Primary

EVENTS

File Edit Tools

Index

0

GTI: good	time	interval	S
-----------	------	----------	---

Gamma-ray Space Telescope

Atelier C

out			2	GTI	Binary	2 cols X	108 rows	Header Hist	Plot All Select	
			fv: Binary Tab	le of lat_photo	on_weekly_w3	37_p302_v001	_filt.fits[1] in /	/home/local1/fits_	file/	
File Edit	Tools									11
	_ ENERGY	RA	_ DEC	L	_ В	_ THETA	_ PHI	_ ZENITH_ANGLE	EARTH_AZIMUTH_ANGLE	
Select	Е	E	E	E	E	E	E	E	E	D
_ Ali	MeV	deg	deg	deg	deg	deg	deg	deg	deg	s
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	1.271360E+02	5.159875E+01	1.162258E+01	1.722078E+02	-3.602166E+01	1.971371E+01	2.266024E+02	3.285338E+01	3.244904E+02	4.677738951917E+08
2	1.573089E+02	5.680057E+01	6.685381E+01	1.389937E+02	9.635592E+00	3.552819E+01	4.544296E+01	8.284359E+01	3.545354E+02	4.677739008507E+08
3	1.695578E+03	7.843346E+01	3.965472E+01	1.674409E+02	4.382762E-01	2.255245E+01	3.470521E+02	5.540842E+01	7.098304E+00	4.677739030041E+08
4	9.674276E+02	4.965982E+01	3.994494E+01	1.512769E+02	-1.468975E+01	8.774882E+00	6.334771E+01	5.865550E+01	3.409695E+02	4.677739049480E+08
5	3.281965E+02	8.952564E+01	3.612177E+01	1.751360E+02	5.912612E+00	3.078979E+01	3.374878E+02	5.420893E+01	1.835685E+01	4.677739070787E+08
6	7.772005E+02	7.212161E+01	6.166676E+01	1.474597E+02	1.068874E+01	3.266009E+01	3.175640E+01	7.685814E+01	4.763033E-01	4.677739079864E+08
7	8.472022E+02	8.514504E+01	9.370120E+00	1.962426E+02	-1.112456E+01	3.731439E+01	2.894615E+02	2.809679E+01	3.013582E+01	4.677739102076E+08
8	1.405282E+02	7.420302E+01	2.288157E+01	1.788253E+02	-1.246904E+01	2.070964E+01	2.992690E+02	3.796863E+01	3.841174E+00	4.677739161209E+08
9	5.509283E+03	5.379588E+01	5.213021E+01	1.466845E+02	-3.024499E+00	2.044386E+01	4.795040E+01	6.888545E+01	3.483255E+02	4.677739172008E+08
10	6.077189E+02	7.858049E+01	1.016610E+01	1.920876E+02	-1.624311E+01	3.191987E+01	2.824131E+02	2.604097E+01	1.552682E+01	4.677739175089E+08
11	2.225864E+02	9.098786E+00	1.623577E+01	1.176853E+02	-4.648264E+01	4.292139E+01	1.499772E+02	6.946249E+01	2.941005E+02	4.677739222665E+08
12	7.667927E+02	8.480399E+01	3.681464E+01	1.725911E+02	3.004245E+00	2.636329E+01	3.391500E+02	5.305603E+01	1.279193E+01	4.677739226259E+08
13	8.353046E+02	9.168973E+01	-3.012069E+00	2.105100E+02	-1.131034E+01	5.036011E+01	2.830357E+02	2.270643E+01	6.045962E+01	4.677739226964E+08
14	9.223093E+02	7.733179E+01	2.966288E+00	1.978832E+02	-2.106479E+01	3.659081E+01	2.723547E+02	1.853242E+01	1.662431E+01	4.677739238359E+08
15	2.455558E+02	9.984896E+01	3.021271E+01	1.844327E+02	1.089841E+01	3.954520E+01	3.298105E+02	5.235728E+01	3.051429E+01	4.677739240784E+08
16	1.034272E+02	7.886540E+01	3.085065E+01	1.748058E+02	-4.408450E+00	2.166403E+01	3.237120E+02	4.607558E+01	7.911556E+00	4.677739259243E+08
17	1.528603E+02	9.732709E+01	1.112144E+01	2.005282E+02	2.158772E-01	4.529121E+01	3.024665E+02	3.580197E+01	4.511086E+01	4.677739277063E+08
18	1.309305E+02	4.218644E+01	6.013853E+01	1.370480E+02	5.218704E-01	2.923808E+01	6.142661E+01	7.870087E+01	3.451663E+02	4.677739297451E+08
19	1.377829E+02	4.239448E+01	1.752457E+01	1.589619E+02	-3.694826E+01	1.769841E+01	1.917520E+02	4.385422E+01	3.161351E+02	4.677739323600E+08
20	1.854340E+02	1.363964E+01	6.257446E+01	1.232917E+02	-2.950570E-01	3.977779E+01	7.766737E+01	8.969711E+01	3.367131E+02	4.677739347035E+08

fv: Summary of lat_photon_weekly_w015_p130_v001_filt.fits in /home/local1/fits_file/

Dimension

8

22 cols X 282496 rows

- 0 ×

Table

View

Image

Hist Plot

Header

Help

The spacecraft data

fv lat_spacecraft_weekly_wxxxx_p202_v001.fits

ile Edit	Tools							He
Index	Extension	Туре	Dimension			View		
	Primary	Image	0	Header	lma	age	1	Fable
1	SC_DATA	Binary	30 cols X 17102 rows	Header	Hist	Plot	All	Select

fv: Binary Table of lat_spacecraft_weekly_w015_p202_v001.fits[1] in /home/local1/fits_file_sat/

_

H

File Edit Tools

Select	_ START D	_ STOP D	□ SC_POSITION 3E	_ LAT_GEO E	LON_GEO	_ RAD_GEO D	□ RA_ZENITH E	_ DEC_ZENITH E	B_MCILWAIN	_ L_MCILWAIN E	_ GEOMAG_LAT E
_ Ali	S	S	m	deg	deg	m	deg	deg	Gauss	Earth_Radii	deg
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	2.427857869865 E +08	2.427858166000E+08	Plot	-1.990907E+01	2.247747E+01	5.645522826428E+05	2.032747E+01	-1.977579E+01	2.385341E+00	1.448905E+00	3.382224E+01
2	2.427858166000E+08	2.427858466000E+08	Plot	-1.936498E+01	2.423490E+01	5.644139690017E+05	2.220862E+01	-1.923535E+01	2.308847E+00	1.430768E+00	3.327805E+01
3	2.427858466000E+08	2.427858766000E+08	Plot	-1.879419E+01	2.600236E+01	5.642632476559E+05	2.410142E+01	-1.866837E+01	2.230679E+00	1.411781E+00	3.268835E+01
4	2.427858766000E+08	2.427859066000E+08	Plot	-1.820441E+01	2.775689E+01	5.641031864036E+05	2.598130E+01	-1.808254E+01	2.151622E+00	1.392313E+00	3.206092E+01
5	2.427859066000E+08	2.427859366000E+08	Plot	-1.759642E+01	2.949864E+01	5.639359926110E+05	2.784839E+01	-1.747862E+01	2.074365E+00	1.372034E+00	3.138092E+01
6	2.427859366000E+08	2.427859666000E+08	Plot	-1.697097E+01	3.122778E+01	5.637608188173E+05	2.970287E+01	-1.685736E+01	1.999152E+00	1.351997E+00	3.068039E+01
7	2.427859666000E+08	2.427859966000E+08	Plot	-1.632885E+01	3.294453E+01	5.635797693304E+05	3.154497E+01	-1.621954E+01	1.925457E+00	1.331926E+00	2.994753E+01
8	2.427859966000E+08	2.427860266000E+08	Plot	-1.567083E+01	3.464919E+01	5.633934075831E+05	3.337497E+01	-1.556592E+01	1.854294E+00	1.311962E+00	2.918492E+01
9	2.427860266000E+08	2.427860566000E+08	Plot	-1.499767E+01	3.634205E+01	5.632046538888E+05	3.519316E+01	-1.489727E+01	1.786114E+00	1.292233E+00	2.839504E+01
10	2.427860566000E+08	2.427860866000E+08	Plot	-1.431015E+01	3.802348E+01	5.630122363429E+05	3.699994E+01	-1.421435E+01	1.720410E+00	1.272895E+00	2.758228E+01
11	2.427860866000E+08	2.427861166000E+08	Plot	-1.360904E+01	3.969387E+01	5.628170811632E+05	3.879568E+01	-1.351793E+01	1.660880E+00	1.253993E+00	2.674704E+01
12	2.427861166000E+08	2.427861466000E+08	Plot	-1.289511E+01	4.135367E+01	5.626228065841E+05	4.058081E+01	-1.280878E+01	1.602668E+00	1.235614E+00	2.589197E+01
13	2.427861466000E+08	2.427861766000E+08	Plot	-1.216913E+01	4.300333E+01	5.624288435352E+05	4.235581E+01	-1.208767E+01	1.548178E+00	1.217830E+00	2.501953E+01
14	2.427861766000E+08	2.427862066000E+08	Plot	-1.143186E+01	4.464334E+01	5.622344581762E+05	4.412117E+01	-1.135533E+01	1.497340E+00	1.200696E+00	2.413197E+01
15	2.427862066000E+08	2.427862366000E+08	Plot	-1.068404E+01	4.627421E+01	5.620400710153E+05	4.587738E+01	-1.061251E+01	1.448916E+00	1.184260E+00	2.323171E+01
16	2.427862366000E+08	2.427862666000E+08	Plot	-9.926421E+00	4.789650E+01	5.618466261620E+05	4.762501E+01	-9.859968E+00	1.406003E+00	1.168557E+00	2.232094E+01
17	2.427862666000E+08	2.427862966000E+08	Plot	-9.159789E+00	4.951076E+01	5.616578364172E+05	4.936462E+01	-9.098469E+00	1.365149E+00	1.153611E+00	2.140183E+01
18	2.427862966000E+08	2.427863266000E+08	Plot	-8.384860E+00	5.111759E+01	5.614722778054E+05	5.109679E+01	-8.328728E+00	1.327309E+00	1.139436E+00	2.047618E+01
19	2.427863266000E+08	2.427863566000E+08	Plot	-7.602385E+00	5.271758E+01	5.612908424451E+05	5.282212E+01	-7.551490E+00	1.292099E+00	1.126058E+00	1.954723E+01
20	2.427863566000E+08	2.427863866000E+08	Plot	-6.813104E+00	5.431137E+01	5.611073092280E+05	5.454125E+01	-6.767493E+00	1.259637E+00	1.113490E+00	1.861778E+01

Data analysis

Inspecting the ROI

Many (overlapping) sources in the ROI → maximum likelihood!

1GeV - 10GeV

Detected sources are listed in the 3FGL Catalog: http://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/ Atelier CTA Oct. 2017

Likelihood analysis: basics

The source model is considered as:

$$\begin{split} S(E, \hat{p}, t) = \sum_{i} s_i(E, t) \delta(\hat{p} - \hat{p}_i) + S_G(E, \hat{p}) + S_{\text{eg}}(E, \hat{p}) + \sum_{l} S_l(E, \hat{p}, t), \\ \uparrow & \swarrow & \swarrow & \uparrow \\ \hline \text{Point Sources} & \text{Galactic \& EG Diffuse Sources} & \text{Other Sources} \end{split}$$

This model is folded with the Instrument Response Functions (IRFs) to obtain the predicted counts in the measured quantity space (E',p',t'):

$$M(E', \hat{p}', t) = \int_{SR} dE d\hat{p} R(E', \hat{p}', t; E, \hat{p}) S(E, \hat{p}, t)$$

where

Gamma-ray Space Telescope

$$R(E', \hat{p}'; E, \hat{p}, t) = A(E, \hat{p}, \vec{L}(t)) D(E'; E, \hat{p}, \vec{L}(t)) P(\hat{p}'; E, \hat{p}, \vec{L}(t))$$

is the combined IRF. L(t) is the orientation vector of the spacescraft. The integral is performed over the Source Region, i.e. the sky region encompassing all sources contributing to the Region-of – Interest (ROI). In the standard analysis, only steady sources are considered

$$S(E, \hat{p}, t) \to S(E, \hat{p})$$

Likelihood analysis: basics

The function to maximize is:

$$\log \mathcal{L} = \sum_{j} \log M(E'_{j}, \hat{p}'_{j}, t_{j}) - N_{\text{pred}}$$

where the sum is performed over photons in the ROI. The predicted number of counts is: $N_{\text{pred}} = \int_{\text{POI}} dE' d\hat{p}' dt M(E', \hat{p}', t)$

To save CPU time, a model-independent quantity, « exposure map (cube)» is precomputed:

$$\varepsilon(E,\hat{p}) \equiv \int_{\text{ROI}} dE' \, d\hat{p}' \, dt \, R(E',\hat{p}',t;E,\hat{p})$$

Then

$$N_{\rm pred} = \int_{\rm SR} dE d\hat{p} \, S(E, \hat{p}) \, \varepsilon(E, \hat{p})$$

Diffuse-emission models

• Galactic diffuse model: gll_iem_v06.fits model adjusted to data

Space Telescope

• Extragalactic diffuse model actually sum of true gamma-ray extragalactic diffuse+ instrumental background Ex:

iso_P8R2_SOURCE_V6_v06.txt

34.171 2.52894e-06 2.02085e-09 44.3332 1.2486e-06 6.37177e-10 57.5177 6.14648e-07 4.13763e-10 74.6231 3.09835e-07 2.20674e-10 96.8155 1.58407e-07 1.36949e-10 125.608 9.04064e-08 8.11021e-11 162.963 5.44142e-08 5.50435e-11 211.427 2.96885e-08 3.16824e-11 274.305 1.579e-08 2.14466e-11 355.881 8.43735e-09 1.23411e-11 461.718 4.44418e-09 8.65201e-12 599.03 2.29861e-09 4.88778e-12 100 MeV

2E-08

3E-08

4E-08

5E-08

6E-08

10 GeV

2E-08

3E-08

4E-08

5E-08

6E-08

1E-08

1E-08

xml model file

Include two diffise emission models (galactic and isotropic) + point sources

Variety of spectral shapes:

Power law

Gamma-ray Space Telescope

- Log parabola
- Power law + exponential cutoff

. . . .

```
<?xml version="1.0" ?>
<source library title="source library">
<!-- Diffuse Sources -->
<source name="GAL_v02" type="DiffuseSource">
        <spectrum type="PowerLaw">
                <parameter free="1" max="10" min="0" name="Prefactor"</pre>
                 scale="1" value="1.22"/>
                <parameter free="0" max="1" min="-1" name="Index" scale="1.0" value="0"/>
                <parameter free="0" max="2e2" min="5e1" name="Scale" scale="1.0" value="1e2"/>
        </spectrum>
        <spatialModel file="qll iem v02.fit" type="MapCubeFunction">
                <parameter free="0" max="1e3" min="1e-3" name="Normalization" scale="1.0" value="1.0"/>
        </spatialModel>
</source>
<source name="EG_v02" type="DiffuseSource">
        <spectrum type="FileFunction" file="isotropic_iem_v02.txt">
                <parameter free="1" max="10" min="1e-2" name="Normalization" scale="1" value="1"/>
        </spectrum>
        <spatialModel type="ConstantValue">
                <parameter free="0" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/>
        </spatialModel>
</source>
<!-- Target Sources -->
<source name="_3c454" type="PointSource">
   <spectrum type="PowerLaw2">
      <parameter free="1" max="10000" min="0.0001" name="Integral" scale="1e-07" value="15.6325" />
     <parameter free="1" max="5" min="1" name="Index" scale="-1" value="2.507" />
     <parameter free="0" max="500000" min="30" name="LowerLimit" scale="1" value="100" />
      <parameter free="0" max="500000" min="30" name="UpperLimit" scale="1" value="300000" />
    </spectrum>
    <spatialModel type="SkyDirFunction">
      <parameter free="0" max="360" min="-360" name="RA" scale="1" value="343.490616" />
     <parameter free="0" max="90" min="-90" name="DEC" scale="1" value="16.148211" />
    </spatialModel>
 </source>
<!-- Target Sources -->
<source name="Field1" type="PointSource">
  <spectrum type="PowerLaw2">
      <parameter free="1" max="10000" min="0.0001" name="Integral" scale="1e-07" value="1.58" />
     <parameter free="1" max="5" min="1" name="Index" scale="-1" value="2.32" />
     <parameter free="0" max="500000" min="30" name="LowerLimit" scale="1" value="100" />
      <parameter free="0" max="500000" min="30" name="UpperLimit" scale="1" value="300000" />
    </spectrum>
</source>
</source_library>
```


Atelier CTA Oct. 2017

Sermi

Gamma-ray Space Telescope

Science Tools

General:

Gamma-ray Space Telescope

gtselect	Performs selection cuts on event data files.
gtbin	Bins GBM or LAT event lists in time, energy, and/or space to produce light-curves, spectra, count cubes or count maps, respectively.
gtbkg	Creates a background spectrum file (PHA1 format).
gtexpcube2	Generates an exposure map, or a set of exposure maps for different energies, from a livetime cube written by gtitcube.
gtexposure	Given a counts light curve prepared using gtbin for a specific location on the sky, this tool computes the exposure (cm2-s) associated with each time bin, allowing for a light curve in photons/s to be computed.
gtirfs	Give the list of possible infs
gtitcube	Calculates integrated livetime as a function of sky position and off-axis angle.
gtitsum	Adds together livetime cubes produced by gtitcube.
gtmiktime	Create Good Time Intervals (GTIs) based on selections made using the spacecraft data file variables.
gtpsf	Calculates the effective point spread function, as a function of energy at a given source location, averaged over an observation.
gtvcut	This tool displays a summary of the Data Sub-Space keywords.

Likelihood:

gtdiffrsp	Calculates the integral over solid angle of a diffuse source model convolved with the instrumental response function
gtexpmap	Calculates exposure maps for unbinned likelihood analysis.
gtfindsrc	Optimizes a point source location using the likelihood test-statistic.
gtlike	Performs unbinned or binned likelihood analysis of LAT data.
gtitcube	Calculates integrated livetime as a function of sky position and off-axis angle.
gtmodel	Creates a model counts map based on a binned likelihood fit.
gtsrcmaps	Convolves source model components with instrument response.
gtsrcprob	Computes source component probabilities for event data.
gttsmap	Calculates test-statistic map for source localization and detection.
modeleditor Source Id	Create model files for use as input to the Fermi likelihood estimation program. Ientification:

gtsrcid Creates a counterpart candidate catalog by correlating the objects from a list of detected sources with the objects of an existing source catalog, such as the 3EG catalog.

Gamma-ray Burst Analysis:

gtbin	Bins GBM or LAT event lists in time, energy, and/or space to produce light-curves, spectra, count cubes or count maps, respectively.					
gtbindef	def Generate an energy or time bin definition (FITS) file to be used with gtbin.					
gtrspgen	CCreates a "Detector Response Matrix" (DRM or RSP) FITS file from the multi-dimensional response functions.					
gtburstfit	Analyzes burst light curves by applying a Bayesian algorithm to determine the optimum set of blocks to follow the burst profile shape, then optionally fitting a model to the data using the Bayesian Block definitions to determine the number of model components and initial values for the model parameters.					

Pulsar Analysis:

gtpsearch	Searches for pulsations at frequencies near to a known, guessed or estimated reference frequency.				
gtpspec	Searches for pulsations in wide frequency range using the Discrete Fast Fourier Transfer (FFT) technique				
gtptest	Applies statistical tests to a series of pulse phase values stored in given event file(s).				
gtpphase	Computes a pulse phase for each event in input event file(s), and writes it to a FITS column in the file				
gtophase	Computes an orbital phase for each event in input event file(s), and writes it to a FITS column in the fil				
gtephem	Computes and displays a pulsar's frequency ephemeris for a given pulsar and instant of time.				
gtpulsardb	CCreates, filters, and/or combines pulsar ephemerides database files.				
gtbary	Performs barycentric or geocentric corrections to photon arrival times.				

Solar System Sources:

gtitcubesun	Calculates integrated livetime as a function of sky position, instrument angle and distance from a solar system body (sun or moon).				
gtitsumsun	Adds together livetime cubes produced by gtitcubesun.				
gtexphpsun	It calculates the exposure for different energies as a function of distance from the Sun or Moon using the livetime cube generated by gtitcubesun. The map is used by gtsuntemp to calculate the exposure weighted average intensity of the Sun or the Moon.				
gtsuntemp	Generates the average intensity skymaps as a function of energy for the Sun or the Moon. The output fits file can be used in likelihood analysis in a similar fashion as the diffuse emission model.				

Observation Simulation:

gtobssim	Generate photon events from astrophysical sources and process those photons according to the specified instrument response functions.			
gtorbsim	Generate spacecraft orbit and attitude data for a variety of pointing or survey mode strategies.			
modeleditor	Create model files for use as input to the Fermi likelihood estimation program.			

Binned analysis is favored for long periods (faster to run).

Unbinned analysis is more accurate (short periods)

Mixing the two is possible (combined likelihood).

 $TS=-2 (log L - log L_{o})$

Analysis flow

Binned (sum over bins in space and energy)

- 1. Create model
- 2. Extract data (gtselect/gtmktime)
- 3. Bin data into counts cube (gtbin)
- 4. Compute observation profile (gtltcube)
- 5. Compute exposure cube (gtexpcube2)
- 6. Produce source maps (gtsrcmaps)
- 7. Do MLE and compute TS (gtlike)

Unbinned (sum over photons)

- 1. Create model
- 2. Extract data (gtselect/gtmktime)
- 3. Compute diffuse response (gtdiffrsp)
- 4. Compute observation profile (gtltcube)
- 5. Compute diffuse exp. Maps (gtexpmap)
- 6. Do MLE and compute TS (gtlike)

Details of the methods can be found in http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone

prompt> gtselect evclass=128 evtype=3 Input FT1 file: @events.txt Output FT1 file[: 3C279_region_filtered.fits RA for new search center (degrees) (0:360) : 193.98 Dec for new search center (degrees) (-90:90) : -5.82 radius of new search region (degrees) (0:180) : 20 start time (MET in s) (0:) : 311731200 end time (MET in s) (0:) :311990400 lower energy limit (MeV) (0:) :100 upper energy limit (MeV) (0:) [:500000 maximum zenith angle value (degrees) (0:180) : 90 Done prompt>

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

325758.9	FROM MIGR.	AD STATUS=CON 6E-04 STRATEG	VERGED 1 Y= 1 F	75 CALLS REOR MATRIX	176 TOTAL ACCURATE
PARAMETER NAME Normalizat Integral Index Integral Index Prefactor Integral Index	VALUE .61151 1.5789 2.3207 .43409 2.2117 1.5853 3.1538 1.2937 15.650 2.5079	ERROR .31584E-01 .13091 .57567E-01 .92339E-01 .11439 .18111 .11154 .29627E-01 .32651 .19465E-01 ERR DEF= .500	STEP SIZE .70564E-0 .84476E-0 .32813 .10990E-0 .50000 .84133E-0 .50000 .34174E-0 .25325E-0 .10779	FIRST DERIVATI 1 .33466 240981 129061 1 .50641 18973 2663771 2 .31552 1 .22873 2 -4.1985 .34593	VE E-01 E-01 E-01 E-01
6 **HESSE					
325758.9	FROM HESS EDM= .3	E STATUS=OK 6E-04 STRATEG	Y= 1 E	02 CALLS RROR MATRIX	278 TOTAL ACCURATE
PARAMETER NAME Normalizat Integral Index Integral Index Prefactor Integral Index values: values: egral = 0.6 egral = 0.4	VALUE .61151 1.5789 2.3207 .43409 2.2117 1.5853 3.1538 1.2937 15.650 2.5079 311512 789 22065 34088	ERROR .45414E-01 .15452 .68392E-01 .11134 .13803 .20780 .14838 .42606E-01 .34443 .20544E-01 ERR DEF= .500	INTERNAL STEP SIZE .31227E-0 .48950E-0 .14478E-0 .60392E-0 .27075E-0 .27075E-0 .29372E-0 .21076E-0 .38621E-0 .47616E-0	INTERNA VALUE 3 -1.0750 4 -1.5457 234657 3 -1.5576 140513 4 -1.5456 1 .769911 383494 4 -1.4917 324859	L E-01
ex = 2.2 egral = 1.5	1172 8531				
ex = 3.1 factor = 1.2 egral = 15. ex = 2.5 t fit quality	9372 65 0793 : 3 estima	ted distance: 3.	5555e-05		· (
t parameter u 0.0454168 0.15452 0.068407 0.111335 0.138158 0.207796 0.148518 0.0426102	ncertainties	F			
	325758.9 PARAMETER NAME Normalizat Integral Integral Index Integral Index Prefactor Integral Index ****** 325758.9 PARAMETER NAME Normalizat Integral Index Integral Index Normalizat Integral Index Integral Index Prefactor Integral Index Prefactor Integral Index Parametres Normalizat Index Prefactor Integral Index Prefactor Integral Index Parametres Normalizat Index Prefactor Integral Index Prefactor Integral Index Prefactor Integral Index Prefactor Integral Index Prefactor Integral Index Prefactor Integral Index Prefactor Integral Index Prefactor Integral Index NAME Normalizat Index Prefactor Integral Index NAME Normalizat Index Prefactor Integral Index NAME NOR	325758.9 FROM MIGR EDM= .2 PARAMETER NAME VALUE Normalizat .61151 Integral 1.5789 Index 2.3207 Integral 1.5853 Index 2.2117 Integral 1.5853 Index 2.2117 Integral 15.650 Index 2.5079 ****** 325758.9 FROM HESS EDM= .3 PARAMETER NAME VALUE Normalizat .61151 Integral 1.5789 Index 2.3207 Integral .43400 Index 2.3207 Integral .5789 Index 2.3207 Integral .5789 Index 2.3207 Integral .5789 Index 2.3207 Integral .5789 Index 3.1538 Prefactor 1.2937 Integral 15.650 Index 2.5079 values: malizat = 0.611512 egral = 1.5789 ex = 2.32065 egral = 0.434088 ex = 2.21172 ggral = 1.5853 factor = 1.29372 egral = 15.65 ex = 2.50793 t fit quality: 3 estima t parameter uncertainties 0.0454168 0.11335 0.138158 0.207796 0.148518 0.00202	325758.9 FROM MIGRAD STATUS=CON EIM= PARAMETER NAME VALUE ERROR Normalizat .61151 .31584E-01 Integral 1.5789 .13091 Index 2.3207 .57567E-01 Integral .43409 .92339E-01 Index 2.2117 .11439 Integral 1.5853 .18111 Index 3.1538 .11154 Prefactor 1.2937 .20627E-01 Integral 15.650 .32651 Index 2.5079 .19465E-01 ERR DEF= .500 .506-04 ****** 325758.9 FROM HESSE STATUS=0K PARAMETER NAME VALUE ERROR Normalizat .61151 .45414E-01 Integral 1.5789 .15452 Index 2.3207 .68392E-01 Integral 1.49409 .11134 Index 2.1217 .13803 Integral 1.5789 .20780 <t< td=""><td>325758.9 FROM MIGRAD STATUS=CONVERCED 1 PARAMETER STEP NAME VALUE ERROR SIZE Normalizat .61151 .31584E-01 .70564E-0 Integral 1.5789 .12001 .84476E-0 Index 2.3207 .57567E-01 .32813 Integral 1.5853 .18111 .84133E-0 Index 2.2117 .11439 .50000 Integral 1.5853 .18111 .84133E-0 Index 3.1538 .11154 .50000 Integral 1.5853 .82651 .2532E-0 Index 2.5079 .19465E-01 .10779 ERR DEF= .500 .555 .2532E-0 Index 2.5079 .19465E-01 .10779 ERME STEP SIZE .1079 .1474E-01 Normalizat .61151 .45414E-01 .31227E-0 Integral 1.5789 .15452 .48950E-01 Index 2.3207 .68392E-01 .14478E-0 Index 2.3207 .68392E-01</td><td>325758.9 FROM MIGRAD STATUS=CONVERCED 175 CALLS PARAMETER STEP FIRST NAME VALUE ERROR SIZE DERIVATT Integral 1.5789 1.3001 84476E-02 .43061 Integral 4.3409 .92339E-01 10090E-01 .50641 Integral 1.5853 .18111 .84138E-02 -66377 Integral 1.5853 .18114 .50000 31552 Prefactor 1.2337 .28627E-01 .4174E-01 .22873 Integral 15.650 .32651 .25325E-02 -4.1985 ****** 325758.9 FROM HESSE STATUS=0K INTERNAL INTERNAL NAME VALUE ERROR STEP SIZE VALUE NAME VALUE STATUS=0K <t< td=""></t<></td></t<>	325758.9 FROM MIGRAD STATUS=CONVERCED 1 PARAMETER STEP NAME VALUE ERROR SIZE Normalizat .61151 .31584E-01 .70564E-0 Integral 1.5789 .12001 .84476E-0 Index 2.3207 .57567E-01 .32813 Integral 1.5853 .18111 .84133E-0 Index 2.2117 .11439 .50000 Integral 1.5853 .18111 .84133E-0 Index 3.1538 .11154 .50000 Integral 1.5853 .82651 .2532E-0 Index 2.5079 .19465E-01 .10779 ERR DEF= .500 .555 .2532E-0 Index 2.5079 .19465E-01 .10779 ERME STEP SIZE .1079 .1474E-01 Normalizat .61151 .45414E-01 .31227E-0 Integral 1.5789 .15452 .48950E-01 Index 2.3207 .68392E-01 .14478E-0 Index 2.3207 .68392E-01	325758.9 FROM MIGRAD STATUS=CONVERCED 175 CALLS PARAMETER STEP FIRST NAME VALUE ERROR SIZE DERIVATT Integral 1.5789 1.3001 84476E-02 .43061 Integral 4.3409 .92339E-01 10090E-01 .50641 Integral 1.5853 .18111 .84138E-02 -66377 Integral 1.5853 .18114 .50000 31552 Prefactor 1.2337 .28627E-01 .4174E-01 .22873 Integral 15.650 .32651 .25325E-02 -4.1985 ****** 325758.9 FROM HESSE STATUS=0K INTERNAL INTERNAL NAME VALUE ERROR STEP SIZE VALUE NAME VALUE STATUS=0K <t< td=""></t<>

Field3:

Integral: 1.58531 +/- 0.207796 Index: 3.15383 +/- 0.148518 LowerLimit: 100 UpperLimit: 300000 Npred: 313.794 ROI distance: 10.5547 TS value: 136.841

GAL_vO2: Prefactor: 1.29372 +/- 0.0426102 Index: 0 Scale: 100 Npred: 16057

```
_3c454:
Integral: 15.65 +/- 0.344429
Index: 2.50793 +/- 0.020544
LowerLimit: 100
```

```
UpperLimit: 300000
```

Npred: 4527.45 ROI distance: 0

TS value: 10657.7

WARNING: Fit may be bad in range [100, 222.696] (MeV)

Total number of observed counts: 28719 Total number of model events: 28719

-log(Likelihood): 325758.9218

```
Elapsed CPU time: 85.62
/COSPAR < 121 >
```

Checking the fit quality (1)

> gtlike plot=yes

Gamma-ray Space Telescope

Counts vs model predictions and residues for the whole ROI

Checking the fit quality (2)

gtmodel creates a model map to be compared to the data, yielding spatial residues .

Atelier CTA Oct. 201/

All ressources are available at the Fermi Science Support Center (FSSC).

Fermi will be operating till 2019, and possibly beyond. The GBM will continue detecting short GRBs, having potential GW counterparts.

Summer schools devoted to the Fermi data analysis are organized on a regular basis by NASA (ex. Lewes, Delaware).

Merci!