NEUTRON STARS, GRAVITATIONAL WAVES & ULTRA-DENSE MATTER

Jérôme Novak & Micaela Oertel

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris

in collaboration with M. Antonelli, P. Davis, A. Fantina, F. Gulminelli, C. Mondal, G. Servignat, L. Suleiman, ... based on *Mondal et al. MNRAS* 524 (2023)

Journée du LUTH 2024, April, 23rd 2024

Cold, β -equilibrated neutron stars

Neutron stars are born in the center of core-collapse supernovae. After a few minutes, and the formation of a crust, thermal effects on the structure are becoming negligible.

Composite image of Cassiopeia A ©NASA/Chandra

- \Rightarrow T ~ 0: cold nuclear matter;
- β-equilibrium has been reached in most parts of the star:
 n → p+e⁻+ν_e, and p+e⁻ → n+ν_e;
- many neutron stars observed as pulsars: rotation up to ~ 700 Hz;
- From simple estimate $GM/Rc^2 \sim 0.2 \Rightarrow$ compact object: general-relativistic effects are non-negligible.

GRAVITATIONAL WAVES Detectors for Neutron Star Interior

LIGO-Virgo-Kagra: current ground-based detectors (USA – France-Italy-Netherlands+ – Japan) From the mass range of neutron stars, high frequencies (\sim few 100 Hz) are the best to detect the last stages of binary neutron star (BNS) coalescence.

Einstein Telescope (European project $\Rightarrow 2040$?)

BINARY NEUTRON STARS

COALESCENCE, MERGER, ...

Binary systems of compact objects are the main sources of gravitational radiation: binary black holes (BBH), neutron stars (BNS) and mixed (NSBH).

[Radice+ 2020]

- **GW170817** was the first BNS detected with gravitational waves,
- only inspiral phase ⇒ measure/constraints of masses, spins and tidal deformabilities.

NEUTRON STAR MATTER Equation of State

Equation of state (EoS): relation between thermodynamic variables $(P, \epsilon, n_B, ...)$, e.g. $P(\epsilon)$ and describes microphysical properties of matter.

EoS is computed from properties of nuclear matter, at densities around nuclear saturation density and above.

Assuming spherical symmetry, one-to-one relation between the EoS and the M - R relation of neutron star equilibrium states.

 \Rightarrow what is the EoS for (cold β -equilibrated) neutron star matter?

TIDAL DEFORMABILITY & GRAVITATIONAL WAVES

A (spherical) neutron star in a binary system is deformed by the companion's tidal gravitational field:

- Q: quadrupole tensor
- \mathcal{E} : tidal field from the companion

 $\mathcal{Q}_{\mathrm{tidal}} = -\lambda \mathcal{E}_{\mathrm{tidal}}$

and $\Lambda = G\lambda \left[c^2/(GM) \right]^5$.

Waveforms for binary systems depend on each body's mass, spin and tidal deformability (Λ) . $\Rightarrow \Lambda$ is the only source of information about the internal structure ... and depends on the EoS.

GW170817: A FIRST CONSTRAINT

 \Rightarrow to get EoS information, reconstruct from $M(\Lambda)$ from more precise (upgrades / next generation) instruments.

PHASE TRANSITION?

In principle OK, but needs many detections

Is it possible to get information about a possible **phase** transition from one detection of third-generation instruments (ET and Cosmic Explorer) ?

DETECTABILITY OF A PHASE TRANSITION

- Metamodel approach to nuclear matter [Dinh Thi+2021] and quark matter (constant sound speed) [Mondal+2023]
- Injected EoS chosen within the ranges covered
- Three possible phase transition onset densities

- [Mondal+2023]
- Simulate observations with 3rd generation detector network (ET +2CE)
 - Detector response estimated using Fisher matrix formalism within GWBENCH [Borhanian2021].
 - Fixing spins and inclination, varying distance and two component masses

DETECTABILITY OF A PHASE TRANSITION

BAYESIAN ANALYSIS WITH ONE LOUD EVENT

- 450 simulated events (distance, component masses, injected EoS):
 - Mass ratio has little effect.
 - Higher chirp mass can make it easier to distinguish.
 - The smaller the distance the easier.
 - A high-density PT is difficult to distinguish.

[Mondal+2023]

- Possible to identify a strong PT with an onset at low density, high density onset masked.
- Analysis with accumulation of events to be done.

SUMMARY – OUTLOOK

SUMMARY

- Virgo group, participated to the study of possible upgrade after \sim 2030 (Virgo_nEXT).
- ET group, participated to the science case for nuclear physics
- Excellent opportunities for neutron star physics: EoS and phase transition.

Outlook

- Continue on the search of third-generation detectors to detect phase transition signature in BNS mergers, with a "realistic" BNS population.
- Study dynamics and oscillation modes of BNS post-merger phase, relating them to nuclear matter properties (Gaël's PhD + ANR project).
- Look for EM precursor signal from interacting magnetospheres in BNS merger.

Aiguille de Roc, Haute-Savoie

Thank you!