

RayGal relativistic ray-tracing (Michel-Andrès Breton) ┿ e-MANTIS emulator (Iñigo Sáez-Casares PhD) => Yann RASERA

LUTH/Univ. Paris Cité /Obs. de Paris /PSL/CNRS/IUF

April 23rd, 2024

Journée du LUTH 2024

The ProGraceRay Project: PRObing GRAvity at Cosmological scalEs with relativistic RAY-tracing

Yann RASERA

LUTH/Univ. Paris Cité /Obs. de Paris /PSL/CNRS/IUF

April 23rd, 2024

23/04/2024

Journée du LUTH 2024

The ProGraceRay Team

Partner	Name	First	Current	Role & responsibilities in the project (4 lines max)	Involvement	
LUTH Paris Observatory Meudon	RASERA	Yann	Associate professor	Coordinator, Tasks 1.1, 1.2, 3.1, 3.2, 4.1-4.4, 5.1, 5.3, 5.4	44p.month	
	CORASANITI	Pier- Stefano	CNRS Researcher	Tasks 1.1,1.2,3.1, 3.2, 4.4, 5.4	12p.month	
	ROY	Fabrice	Research Engineer	Tasks 1.1,1.2, 3.1,3.2	18p.month	
	LE BRUN	Amandine	CNRS Researcher	Tasks 1.1, 1.2, 2.1-2.3, 3.1, 3.2, 5.4	12p.month	
	REVERDY	Vincent	CNRS Researcher	Tasks 3.1,3.2	12p.month	
	SAEZ- CASARES	lõigo	PhD student	Tasks 1.1,1.2, 5.1, 5.2	10p.month	
	<u>Postdoc 1: To</u> <u>be recruited</u>		Postdoctoral Researcher	Tasks 1.1,1.2, 3.1	24p.month	
IAP CNRS Paris	DUBOIS	Yohan	CNRS Researcher	Partner's leader Tasks 2.1-2.3, 5.3, 5.4	10p.month	
	LAVAUX	Guilhem,	CNRS Researcher	Tasks 2.1-2.3	10p.month	
	согомві	Stéphane	CNRS Researcher	Tasks 1.1, 1.2, 2.1-2.3	6p.month	
	CUSIN	Giulia	CNRS Researcher	Tasks 1.1, 3.1, 5.3	6p.month	
	PEIRANI	Sébastien	CNRS Researcher	Tasks 2.1-2.3	8p.month	
	SAGA	Shohei	Postdoctoral Researcher	Tasks 5.2	5p.month	
	Postdoc 2: To be recruited		Postdoctoral Researcher	Tasks 2.1-2.3	24p.month	
AIM CEA <u>Saclay</u> Gif sur Yvette	PIRES	Sandrine	Engineer- Researcher	Partner's leader Tasks 4.1, 4.3, 4.4, 5.4	14p.month	
	CODIS	Sandrine	CNRS Researcher	Tasks 4.3, 4.4, 5.2, 5.3	6p.month	
	Postdoc 3: To be recruited		Postdoctoral Researcher	Tasks 4.1- 4.4	12p.month	
LAM Aix-Marseille <u>University</u> Marseille	DE LA TORRE	Sylvain	Assistant Astronomer	Partner's leader Tasks 4.2, 4.3, 4.4, 5.2, 5.3, 5.4	12p.month	
	JULLO	Eric	Assistant Astronomer	Tasks 4.3, 4.4, 5.2, 5.3, 5.4	10p.month	
	Postdoc 3: To be recruited		Postdoctoral Researcher	Tasks 4.3-4.4, 5.2-5.4	12p.month	
EXTERNAL						
ICE-CSIC-IEEC (Spain)	BRETON	Michel- Andrès	Postdoctoral Researcher	External member Tasks 3.1-3.2, 4.2	5p.month	
YITP/Kyoto University (Japan)	TARUYA	Atsushi	Associate professor	External member Tasks 4.2, 4.3, 4.4, 5.2, 5.3, 5.4	6p.month	

23/04/2024

LUTH

BACKGROUND

WHAT IS THE NATURE OF GRAVITY AT COSMOLOGICAL SCALES?

Modified gravity theories

<u>Lovelock theorem of General Relativity:</u> From a local gravitational action which contains only second derivatives of the four-dimensional space-time metric, then the only possible equations are Einstein-field equations

<u>Modified gravity according to Lovelock theorem</u>

- **1.** Non-locality (or emergence) : no local action
- **2.** Higher-derivatives: more than 2nd derivatives
- 3. Extra-dimensions : more than 4D
- **4.** Extra degrees of freedom: scalar, vector and/or tensor

WHAT IS THE NATURE OF GRAVITY AT COSMOLOGICAL SCALES?

Large-Scale Structure surveys

WHAT IS THE NATURE OF GRAVITY AT COSMOLOGICAL SCALES?

Modified gravity theories

Large-Scale Structure surveys

Modified gravity theories

Large-Scale Structure surveys

ProGraceRay: PRObing GRAvity at Cosmological scalEs with relativistic RAY-tracing

23/04/2024

Journée du LUTH 2024

METHODS

ORGANISATION OF THE WORK

WPO: ADMINISTRATION & MANAGEMENT

ORGANISATION OF THE WORK

RANDOM OR GRID SAMPLING OF THE PARAMETER SPACE

- Cosmological inference in 5D (at least) => needs ~10⁵ accurate predictions
- 1 cosmological N-body simulation=> ~ 10⁴ h (for 512³ part. in modified gravity)
- Total time=> 10⁹ h => TOO MUCH CPU TIME!!!!

LATIN HYPERCUBE SAMPLING OF THE PARAMETER SPACE

Sáez-Casares et al., submitted to A&A, 2024

Since the statistics are smooth :

- Needs ~20*NDIM points ~100 models to capture all the (cross-)derivatives
- Needs 10⁶ h => THIS IS POSSIBLE!

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN GR <u>METHODS</u>

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN GR

<u>METHODS</u>

LUTH

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN GR

<u>METHODS</u>

EMI-

ANALYTICAL

PERTURBATIVE)

NON-LINEARI

m

S

GR INITIAL CONDITIONS: COMPOSITION AND DISTRIBUTION OF COMPONENTS

EXAMPLE										
Name	Model(s)	$L_{\rm box} [h^{-1}{ m Mpc}]$	N _{part}	$m_{\rm part} \left[\left(\Omega_{\rm m} / 0.3071 \right) h^{-1} M_{\odot} \right]$	N _{real}	N _{cosmo}				
L328_M10_wcdm	wCDM	328.125	512 ³	$2.25 \cdot 10^{10}$	64	80				
L656_M11_wcdm	wCDM	656.25	512 ³	$1.79 \cdot 10^{11}$	64	80				
L328_M10_frcdm	f(R)CDM	328.125	512 ³	$2.25 \cdot 10^{10}$	8	80				
L656_M11_frcdm	f(R)CDM	656.25	512 ³	$1.79 \cdot 10^{11}$	8	80				
L328_M9_wcdm	wCDM	328.125	1024^{3}	$2.81 \cdot 10^{9}$	1	16				
L656_M10_wcdm	wCDM	656.25	1024^{3}	$2.25 \cdot 10^{10}$	1	16				
L328_M10_P18	P18	328.125	512 ³	$2.25 \cdot 10^{10}$	384	1				
L328_M10_w12	w12	328.125	512 ³	$2.25 \cdot 10^{10}$	64	1				
L328_M10_F5	F5	328.125	512 ³	$2.25 \cdot 10^{10}$	64	1				
L164_M10	P18, F5, F6	164.0625	256 ³	$2.25\cdot 10^{10}$	1	3				
L164_M9	P18, F5, F6	164.0625	512 ³	$2.81 \cdot 10^{9}$	1	3				
L164_M8	P18	164.0625	1024^{3}	$3.51 \cdot 10^{8}$	1	1				

The wCDM and f(R)CDM **e-MANTIS simulation suite** Sáez-Casares et al., 2023 Sáez-Casares et al., submitted to A&A, 2024

We combine:

- several universe realizations

- several mass resolutions
- -several simulation volumes
- => to increase the effective dynamical range

23/04/2024

Rem: to be expanded in ProGraceRay (to enable Raytracing)

LUTH

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN GR <u>METHODS</u>

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN GR

<u>METHODS</u>

23/04/2024

Journée du LUTH 2024

(supervisors: J-M Alimi and Y.Rasera)

LUTH

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN GR

METHODS

ACCURATE MODEL OF LARGE-SCALE STRUCTURE FORMATION IN MG

METHODS

SOME RESULTS FROM RAYGAL & e-MANTIS

EXAMPLE OF RELATIVISTIC EFFECTS:WEAK-LENSING SHEAR (LEFT)

AND OTHERS (gravitational redshift, ISW effect, transverse Doppler, etc)

• Relativistic approach at large scales: Yoo+ 2010; Bonvin&Durrer 2011; Yoo 2011; Lewis&Challinor

2011

Use **similar formalism as for CMB** (i.e. weak field GR) but applied to galaxies ->LIMITATION OF ORIGINAL WORKS: **LINEAR** REGIME

- Relativistic approach at cluster scale and around: Kaiser2013, Zhao2013, Croft2013, Cai+2017
- -> LIMITATION: How to connect with linear predictions ?

=> GR effects WITH SIM IS A HOT TOPIC: Killedar12, Reverdy14, Adamek16, Giblin17, Borzyszkowski17, Breton19, Adamek19, Lepori20, Guandalin21, Lepori21, Rasera22, ... 24

EXAMPLE OF RELATIVISTIC EFFECTS WITH RAYGAL: PROFILE OF WEAK-LENSING SHEAR (LEFT) AND HALO-HALO DIPOLE (RIGHT)

Courtesy: Michel-Andrès Breton

THE WEAK-LENSING SHEAR PROFILE IS SENSITIVE TO NON-TRIVIAL RELATIVISTIC EFFECTS

THE HALO-HALO DIPOLE IS A NEW PROBE OF THE POTENTIAL AT COSMIC SCALES

EXAMPLE OF EMULATION WITH e-MANTIS: MATTER POWER SPECTRUM (LEFT) AND HALO MASS FUNCTION (RIGHT)

EXAMPLE OF EMULATION WITH e-MANTIS: MATTER POWER SPECTRUM BOOST (LEFT) AND HALO MASS FUNCTION BOOST (RIGHT)

23/04/2024

Journée du LUTH 2024

CONCLUSION PROGRACERAY PROJECT

<u>Goal</u>

Fast predictions of multiple complementary observables in a wide range of modified gravity models

<u>Methods</u> Number of simulations as in e-MANTIS + Size of simulations as in RayGal Relativistic ray-tracing (as in RayGal) Emulators (as in e-Mantis)

Constraints

Comparison with data from DESI, Euclid and LSST will enable strong constraints on the nature of gravity at cosmic scales