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Active galactic nuclei jet

¢ AGN jets are observed to Mega parsec

e |t can be stable to large scale

e Reach a Lorentz factor 3-50

Less certain

VLBl 1.3cm

e Magnetic field

e Synchrotron radiation (polarisation)
VLB! 7mm

e Current models focus on GR-SR-MHD
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I Underlined ID label = non—radial motion

v Standing shocks
v Moving shock

v Trailing components

20
T

v Moving knots with a great varieties of trajectories
(ballistic, accelerated, bended) (Jorstad et al.
2005) : can be understood as a moving shock.
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Trailing components : moving knots appearing i * C trailing components
in the wake of leading ones. g
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Over pressured jet

Gomez et al 1996, Agudo et al.
2001, Mimica et al. 2009, Fromm
et al. 2016, ...

e Jet becomes over pressured

e re-collimation shocks
e Re-acceleration of the jet

e Equidistance for cylindrical jet
e Increasing distance for the conical jet




eMoving shock a perturbation is set at
the jet base

eDetect the shock regions in the jet by
checking variations of the Mach
number

1.Inject relativistic electrons population
at shocks.

2.Radiative cooling of electrons

stationnary shocks

Moving shock —
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Moving shock

= Phase 1

» Adiabatic acceleration
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= Phase 2

o Interaction with internal shocks

= Phase 3

» Shock wave
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Moving shocks induces oscillation of knots

Oscillating knot responsible for the intense
flare.
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Light curves

Four different sources of emission :

eStationary jet, more or less extensive
emission coming from electrons.

eLeading moving shock causing flare

emission during shock - shock interactions.

ePerturbed standing shocks : remnant
emission.

eRelaxation shocks which may have their
own emission signature.
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Relaxation shock formation :

eMoving shock disturbs a standing
shock.

e Standing shock relaxes by releasing a
new moving shock.
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Relaxation shock
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variable a Lorentz factor

N
F(t) = Get + _Zl(ri — [min)sin(w
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Variability induces internal shocks



|
variable a Lorentz factor
N
F(t) = ler + El(ri — Imin)sin(w;t)
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flicker noise power spectrum ( Timmer & Kénig 1995, Malzac, J. 2012)



Periodic Variability (near the jet inlet)
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+ Evolving Shock Regions in the Wake of High-Velocity Shells
« Sustaining and Amplifying Mobile Shock Zones Through Injected Variability at t = 100 R/c



Rising of standing shocks
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e Jet thermalisation at large scale

e Rising of Slow-Moving Shocks
e Development of slow flow regions



Dynamics of Jet Shockwaves

* Downstream |

* Steady shocks
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e Turbulent flow
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* Terminal shock
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* Jet decollimation

Lorentz

L LEL

* Jet Deceleration and Thermalization
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* Upstream
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Perturbation: Flicker Noise

e Same Behavior as Cases with
Periodic Variability

Density

e Downstream Region
e Reduced Turbulence
e More Pronounced Quasi-
Stationary Shocks

Lorentz Factor
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Synthetic Image (Periodic Variability)

* Moving Shock Region

* Radio

* X-ray
* Stationary Shock

* Extended Radio

* X-ray at the Shock Region
* Downstream

* Steady Shocks with Radio

and X-Ray
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Synthetic Image (Flicker Noise)

Moving Shock Region Emits X-ray map at v = 10 Hz =~ p-20
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Unveiling the Jet through Shock-Shock Interactions

* Strong shock-shock interactions result in diverse
emission regions.

* Fork events and flare echoes serve as observational
indicators of relaxation shocks.

* Characterizing relaxation shocks contributes to
constraining jet physics and verifying the plausibility
of the "shock-shock" scenario.

* Strong variability at the jet inlet could induce

terminal shock and a succession of quasi-stationary
shocks.
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