Artificial Intelligence and Cosmology

A powerful way of processing massive data
and/or
A new way of exploring theoretical models?

A truly new way of conducting research in cosmology?

J.M. Alimi
9 Septembre 2024 - Royaumont



A Brief Introduction to Cosmology and 1A

Cosmology.
The origin,
ne structure and
ne evolution of the universe.

The problems are numerous:
Nature of gravity
Physics of the primordial universe
Nature and dynamics of the invisible components dark matter
and dark energy
Formation of cosmic structures, galaxy formation...

In all cases, the physics (known or unknown) involved
are complex and non-linear: Design, Resolution and Interprétation



A Brief Introduction to Cosmology and 1A

The application of Artificial Intelligence (Al) to cosmology
(astrophysics) is (first and foremost, most often) identified as a means
of solving the major challenges linked to the processing of massive
data (observational data (Euclid, LLST, SKA...) or digital data).

Al helps to analyze and model these data, often providing innovative
solutions to automate numerous cleaning, classification and
recognition tasks in the vast volumes of data produced by modern
telescopes: galaxies/stars, galaxy classification, etc.



A Brief Introduction to Cosmology and 1A

Pixelized image analysis / Image analysis by CNN
(Convolutional Neural Network)
(reduced computation, "deep" image structure)

Convolutional neural networks (Y. LeCun 1989)
(Convolution, Pooling)
Image recognition, image segmentation
Cleaning, Classification (2010)
"Turnkey solutions", Data volume management!
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What is 1A, or rather, how does it work?

The Standard definition of machine learning:
» Afield of study that involves developing a program's ability to
learn from "data".
e The aim is to improve a program's ability to perform tasks
without first being "programmed" for them.
« Adistinction is made between a training or learning phase and
a test or production phase.

» The following types of learning can be distinguished:
supervised, unsupervised, reinforcement learning, etc.
* Numerous applications.

Al is more than just a data processing tool, it can be a true
heuristic partner. It gives us the ability to explore complex
theoretical models and generate and test hypotheses.

Machine learning as a way of thinking
Physics Inspired Machine Learning



Machine Learning and Cosmology

ML Procedure as a way of thinking: « Physics Inspired Machine Learning

NON LINEAR
OPERATOR

t

to evaluate tlIe quality and
the preCwQn a&theauiput:

Sensitivity of the result according to the
INPUT and the LEARNING PROCESS,
Quantity, Quality, Precision,
Physical Information,...

Non Physical Granularity of the Data ...

Algorithm (DT, RF, NN, ...)
Optimisation, Adaptability, Precision...

Is such a conceptualization of any physical problem appropriate?
(even beyond physics?)

The construction of the NL operator (fixed architecture) is done
"today" by successive approximations (metrics) thanks to a set of of
available initial and final data.




Machine Learning and Cosmology
ML Procedure as a way of thinking: « Physics Inspired Machine Learning »

METRIC

INPUT: DATA NON LINEAR OPERATOR _— OUTPUT: TARGET

The various questions raised by the ML process are:
adaptability to different problems
quality of the results obtained
Interpretation of the results obtained

all come down to a cross-analysis of the four fundamental elements of
the ML approach:

Data, NL operator, Prediction, Metrics.
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ML Procedure as a way of thinking: « Physics Inspired Machine Learning »
DATA:

Databases for numerical simulations (Cosmologies, Gravity, etc.) are multiplying
(a prerequisite for collaboration with computing centers): Quijote, Camels,
DustGrain, DEUS, ...

Quijote Simulations (Francisco Villaescusa-Navarro (Flatiron/Princeton))
https://quijote-simulations.readthedocs.io/en/latest/index.html

The Quijote simulations is a suite of more than 82,000 full N-body simulations that
have been designed to accomplish two main goals:

*Quantify the information content on cosmological observables

*Provide enough statistics to train machine learning algorithms
2000 simulations correspondant a 2000 modeles cosmologiques (Qy, h, Q;, Ng, a3)

Inferring cosmology from
the spatial distribution of cosmic structures
(DM halos / galaxy clusters, galaxies...)




Machine Learning and Cosmology

DATA: Is it about processing as much (raw) data as possible?

Inferring cosmology from the spatial distribution of cosmic structures
(DM halos / galaxy clusters, galaxies...)

Inference and Linking Non-Gaussian statistics and non-linear dynamics.
(Optimized neural networks)

Graphical Analysis
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ML Procedure as a way of thinking: « Physics Inspired Machine Learning »

NL Operator: A multitude of algorithmic methods, elements of theory to determine
which device is best suited to which problem ? They're not just black boxes, Not
only neural networks, but also decision trees, random forests...

Recognize on a single DM halo the cosmological model in which it was formed

+300000 / Cosmological models. Decision Trees / RF
DM Halo is a complexe structure.! Partitioning the

It forms inside the cosmic web; | attributes hyperspace in
environmental effects, geometry of | homogeneous regions wrt
grav. collapse, dynamical status ... the target.
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NL Operator: Decision Tree/ Random Forest

Recognize on 1 single DM halo the cosmological model in which it was formed
Mass Profile, Shape Profile / Cosmology

Position | Velocity

0.72 - Mass | “(4b,0) | (av,by,cv)
69% 1% 71%
0701 Mass 3547 | 4775
g 0.68 4 Position
g (a,b,c)
1 0.66 + Velocity
s (av,by,cv)
0.64 - e
Table 2. Results of classification between ACDM and RPCDM
0.62 - halos, using different combination of features among mass (the
—— Final Test score 0.729 sequence of (Ms)s), semi-axis length (eigenvalues of shape ten-
0.60 +— sors) and the eigenvalues of the velocity tensor. The presence of

mass attributes is crucial to obtain a test score close to the score
using all the attributes (73 percent).

0 1000 2000 3000
Number of estimators

Fig. 4. Variation of the classification score (on the test set)
in number of estimators in the ensemble of trees. Attributes
of halos in the test set are mass, shape and velocity profiles
(Ma, ag,ba, ca, ay by , €y Jac(o,24)- Early stopping criterion (see
main text) yields the end of the learning as the score on a given
learning sample of the training set reaches a plateau. If this
out of bag sample and the test set are large enough, such a
convergence should be concommitent with the convergence of
the score on the test set. This appears as a plateau too giving a
test score of 73 percent (around 3600 estimators).

On a large population of DM Halos (DEUS+ Dustgrain):
A new fundamental cosmological invariance in GR
models and a new probe of MG theories

(R. Koskas & JIMA 2024)
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NL Operator: Neural Networks:

Perceptron, MultiLayerPerceptron
1. Initialize pi weights:
2. Weighted sum calculation:

S:Z('wfx:ci)+b

3. Apply activation function NL f(S) (sigmolde,
tanh, Relu...). The output becomes

.= f(5)
4. Update weigh...
If the output predicted by the perceptron differs
from the expected output, the weights are updated
according to the error.

wi<—wi+n><(y—:i))><:1:@-

n is the learning rate, y is the expected output, y*
IS the predicted output.

5. Iterations and convergence:

(or epochs) until the weights converge and the
error is sufficiently small.

Weight updating is repeated over several iterations

A mostly complete chart of

I Neural Networks ... |
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ML Procedure as a way of thinking: « Physics Inspired Machine Learning »
Inferring cosmology from the structure of the cosmic web

Cosmic Field NL Dynamics - Cosmic Web (Geometric Collapse Regions)

Cosmological inference (Fields, Voids,
Walls, Filaments, Nodes)
Physical observables: p4i(0),pi(K), ...

Fig. 1. Left: Thin slice 1000 1000 x 0.9765(M pch™")? of density field for fiducial cosmology at redshift z=0 for a smoothing length of 2Mpch™",
the colormap represents the values of the density field in each pixel. Right: a Corresponding number of positive tidal fields eigenvalues (cf. Section
2), voids, walls, filaments, and nodes correspond respectively to 0, 1, 2, and 3 positive cigenvalues.
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ML Procedure as a way of thinking: « Physics Inspired Machine Learning »
Inferring cosmology from the structure of the cosmic web

Cosmic Field NL Dynamics - Cosmic Web (Geometric Collapse Regions)
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Fig. 7. Prediction intervals for the fiducial model using different observables, red vertical lines correspond 1o the true values while green borders
indicate the 1 - ¢ intervals

Extraction of cosmological information is powerful!
Higher accuracy than any other method on cosmology prediction (in real space)!
Cosmology and Collapse Dimensionality (dynamical approximations)

(M. Shalak & JMA 2024)



Exploring cosmological models with Al '

Applications: How to compare the predictions of theoretical
cosmological models with observational data

Step 1: Training using synthetic data

Synthetic training data Cosmological parameters Data and parameters
that mimics the Sloan  pata compression* used to generate synthetic input are cross-referenced
Digital Survey maps (ie. expansion rate of the universe in training network

and matter density etc.)

ﬁ

Step 2: Inference using real data

Sloan Digital
Survey maps

Inference using Cosmological parameters

H *
Data compression trained network for real maps

Lemos et al (2023) arxiv:2310.15256
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ML Procedure as a way of thinking: « Physics Inspired Machine Learning »
NL operator

Generative Al: VAE (Variational Auto-Encoder)
Encoder-Decoder, Latent Space.

X > —> > —>
Input - Encoder I 'Latent a Decoder I IOutputl
P Space
The basic scheme of a variational autoencoder. The model o

receives x as input. The encoder compresses it into the latent
space. The decoder receives as input the information sampled

from the latent space and produces z’ as similar as possible to .

Properties of latent space
(statistical, dynamical, geometrical...)




Cosmology and Machine Learning

Generative Models: DNN

(b) ZA (c) 2LPT

(a) FastPM
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Fig. 2. The columns show 2-D slices of full particle distribution (top) and displacement vector (bottom) by various models, from left to right:

(a) FastPM: the target ground truth, a recent approximate N-body simulation scheme that is based on a particle-mesh (PM) solver ;

(b) Zel'dovich approximation (ZA): a simple linear model that evolves particle along the initial velocity vector;

(c) Second order Lagrangian perturbation theory (2LPT): a commonly used analytical approximatation;

(d) Deep learning model (D*M) as presented in this work.

While FastPM (A) served as our ground truth, B-D include color for the points or vectors. The color indicates the relative difference (¢,nodet — Gtarget)/qtarget Detween the
target (a) location or displacement vector and predicted distributions by various methods (b-d). The error-bar shows denser regions have a higher error for all methods which
suggests that it is harder to predict highly non-linear region correctly for all models: N*M 21 PT and 7A Oiir madal N3M hae 1l
ground truth among the above models (b)-(d).
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« Learning to Predict the Cosmological Structure Formation »
« Deep Density Displacement Model (D3M) / Neural Network »

Siyu He et al. 2019



Cosmology and Machine Learning

Generative Models: GAN and Wasserstein distances
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Figure 1. Schematic representation of the super-resolution emulator implemented in this work. The emulator approximates the underlying
mapping of the distribution of low-resolution density field to high-resolution structures, with the input initial conditions providing an
informative prior distribution from which the emulator constructs the fine structures, to yield a super-resolution field. The difference
between the output of the critic for the real and emulated density fields, conditional on the initial conditions, is the approximate
Wasserstein distance, which is minimized to fit the super-resolution N-body emulator.

3D power spectrum

104,

« Super-resolution emulator of
cosmological simulations using deep
physical models »

103 L
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- Reference LR density
—— Emulated HR density
-=-= Reference HR density .
——

Doogesh Kodi Ramanah et al 2020
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Generative Models: GAN

Fake 256°

Real 2563

« Cosmological N-body
simulations: a challenge for
:iigle.lli;ﬁglviz/leiggle slice from real and generated 256° samples. The GAN-generated samples are produced using the full multi-scale sca Ia ble ge ne rative m Ode Is »

- 32-scale: https://youtu.be/uLwrF73uX2w
- 64-scale: https://youtu.be/xI2cUuk3DRc
- 256-scale: https://youtu.be/nWXP6DVEalA

Mass histogram Peak histogram Power spectral density
108 —— Real =x.._ — Rea —— Real
- / Fake L w0 TN Fake 10! —— Fake
S 10° %
S =
S S X
T 10° e T 10
% %
iy a
10 107! 10
10% J
10° 10 10° 10° 10¢ 10° 10! 107 10° 10¢ 10* 107! 10°
Number of particles Size of the peaks /

Figure 12 Summary statistics of real and GAN-generated 2563 images using the full multi-scale pipeline. The power
spectrum density is shown in units of h Mpc~!, where h = H(/100 corresponds to the Hubble parameter.

Perraudin et al. 2019



Cosmology and Machine Learning
Generative Models: CNN

Mperh Mpc/h

Figure 9: Visualization of slices of the simulations: first column are dark-matter halos, second column are the corresponding
target galaxies. 3d and 4th columns are predictions from our two-phase models, 5th from a single-phase classifier, and last
column are HOD predictions. Red square represents the size of the boxes taken as input by our models.

== nception+R2Unet
R2Unet+R2Unet
— Target
R2Unet
HOD

« From Dark Matter to Galaxies
; with Convolutional Networks »

k{h/Mpc]

Xinyue Zhang et al 2019



Exploring cosmological models with Al

Intelligent management of training data

Intelligent prediction management

Physic Inspired models in Machine Learning,
introducing physical constraints explicitly in the choice
of initial data, NL operator architecture, metric form,

objectives.

(Semi-)analytical physical problem solving



Conclusion: Al as a partner in cosmology

* Al helps to process massive data and model the
universe and its components.

» But it is also a heuristic partner, helping to
explore and improve theoretical models and
our understanding of the physics underlying
cosmological properties.

* Future prospects: Al and cosmology synergy
for new discoveries.
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