Let's talk coverage... T-MOC & F-MOC for ObsCore?

Atelier HEIG Paris-29 et 30 Mai 2025

Pierre Fernique & Cie

- 1. Why coverages?
- 2. Existing IVOA solutions
- 3. MOC & extensions, state of art
- 4. And ObsCore?

Goal reminder: interoperability

- Simplify/accelerate selections:
 => a priori knowledge of coverage avoids unnecessary queries
- What kind of coverage?
 => Space, Time, Frequency...
- 2 challenges:
 - Use appropriate methods? efficient, easy to use,...
 - Which precision vs. Volume? where to set the cursor?

IVOA solutions: state of art

- Level 1 : targets, intervals (e.g. What, Where, When fields in VOEvent; t_min, t_max, em_min, em_max, etc in ObsCore)
 - Very easy to fill in, but approximate, often lacunar, not very efficient (reference frame? resolver?...).
- Level 2 : dedicated syntaxes (e.g. STC in s_region)
 - Syntax to be mastered, adaptive content, but difficult to manipulate (multiple reference systems, complex coverages, etc.).
 - In practice: STC being abandoned by the IVOA, and/or simplified (J2000 only, basic shapes only (e.g. *xtype DALI*), etc.).
- Level 3 : MOC (e.g. *Moc.fits* in *HiPS, coverage* field in *RM registry*)
 - Requires dedicated tools/libs, adaptive content, but in a unique reference system, easy to manipulate (adaptive resolution, performance, ...)
 - In practice: integrated into many tools/libs (spatial MOCs)

For newcomers, a MOC...

Abstract

This document describes the Multi-Order Coverage map method (MOC) version 2.0 to specify arbitrary coverages for sky regions and/or time coverages and potentially other dimensions. The goal is to be able to provide a very fast comparison mechanism between coverages. The mechanism is based on a discretization of space and time dimensions. The system is based on the definition of a specific storage of the map coverage using predefined cells hierarchically grouped which makes it easy to produce and use for exploring astronomical collections. There are already a few applications and libraries which are taking advantage of this new standard.

... specifies arbitrary coverages for sky regions and/or time coverages...

- ... provides a very fast comparison mechanism...
- ... is based on a discretization of space, resp. time, dimensions...
- ... is based on specific storage of the map coverage using predefined cell hierarchically...

See the IVOA MOC 2.0 document for details

MOC standard evolution

MOC principles

3 MOC principles

The MOC standard is defined using four basic building blocks: discretization, unique reference system, hierarchization and efficient encoding:

- 1. Determine a proper tessellation/discretization methodology for each dimension axis (space, time, ...);
- 2. Fix a unique referential system for each dimension (ICRS for the spatial dimension, TCB for the temporal one), to avoid reference conversions and thus allowing to easily compare different data collections;
- 3. Use an hierarchical procedure and a unique representation (canonical form) for compacting and quickly manipulating each axis coverage at any level of accuracy;
- 4. Implement at least one serialization in a binary encoding format (other serializations are possible, e.g. ASCII).

- 1. Discretization
- 2. Unique referential
- 3. Hierarchical and unique representation
- 4. Serializations

MOC principles (cont)

List of numbers
 => 2,7,8,9,10,11,12

With these principles, a MOC consists of a list of numbers which represent the indices of the cells mapping the coverage of the spatial or temporal axis. As soon as the consecutive cells are used at order n, they will be hierarchically grouped in their parent cell at order n-1, and this recursively. This introduces the notion of orders and associated cell index. The cell boundary alignment implied by the hierarchical structure facilitates the combination of cells at different orders. Because of current technological possibilities, to operate efficiently, we are limiting to encode any pair (order, index) on 64 bits (a long), (in fact only 62 bits since we are using one bit for distinguishing space from time in binary encoding and one bit for future usage). The earlier MOC standard was limited to spatial coverage. We are reusing these principles to manipulate temporal coverages, as well as space-time coverages where we can manipulate the two physical dimensions simultaneously.

 As soon as the consecutive cells are used at order n, they will be hierarchically grouped in their parent cell at order n-1, and this recursively => 29/2,7,12 28/2

In practice...

Q	HDAP	_SIA	р												
Summ	ary	XML	Validation												
229		<td>aram></td> <td></td> <td></td> <td>1</td> <td>•</td> <td>-</td> <td>- •</td> <td></td>	aram>			1	•	-	- •						
230															
231															
232	<facility>Landessternwarte Heidelberg-Königstuhl</facility>														
233	<facility>Max-Planck-Institut für Astronomie Heidelberg</facility>														
234	<pre><instrument altidentifier="handle:21.T11975/6447eba9-caa4-4edf-</pre></td><td></td></tr><tr><td></td><td>a050-3</td><td>ebf11b</td><td>9609d">Bruc</instrument></pre>								e Double A	strogra	aph <td>trument</td> <td>></td> <td></td> <td></td>	trument	>		
235	<in< td=""><td>strume</td><td>nt altIdent</td><td>ifier="har</td><td>dle:1.7</td><td>11975/2</td><td>52da6fd</td><td>-e9e9-4</td><td>dac-b8a8</td><td>-</td></in<>	strume	nt altIdent	ifier="har	dle:1.7	11975/2	52da6fd	-e9e9-4	dac-b8a8	-					
	fc4ea5	87feab	">Calar Alt	o Schmidt	Telesco	ope <td>trument</td> <td>></td> <td></td> <td></td>	trument	>							
236	<in< td=""><td>strume</td><td>nt altIdent</td><td>ifier="har</td><td>dle:21</td><td>T11975/</td><td>6447eba</td><td>9-caa4-</td><td>4edf-</td><td></td></in<>	strume	nt altIdent	ifier="har	dle:21	T11975/	6447eba	9-caa4-	4edf-						
	a050-3	ebf11b	9609d">Cala	ar Alto 1.2	3m Cass	segrain<	/instru	ment>							
237	<pre><instrument>72cm Walz Reflector</instrument></pre>														
238	<in< td=""><td>strume</td><td>nt>Calar Al</td><td>lto 2.2m Ca</td><td>ssegra</td><td>in<td>rument></td><td></td><td></td><td></td></td></in<>	strume	nt>Calar Al	lto 2.2m Ca	ssegra	in <td>rument></td> <td></td> <td></td> <td></td>	rument>								
239	<pre><instrument>Calar Alto 3.5m 3-lens corrected</instrument></pre>														
240	<pre><instrument>Calar Alto 3.5m 2-lens corrected</instrument></pre>														
241	<in< td=""><td>strume</td><td>nt>2.2m MPC</td><td>5 telescope</td><td>at La</td><td>Silla<!--</td--><td>instrum</td><td>ent></td><td></td><td></td></td></in<>	strume	nt>2.2m MPC	5 telescope	at La	Silla </td <td>instrum</td> <td>ent></td> <td></td> <td></td>	instrum	ent>							
242	1.10		nerwolf's 1	Sem Dopped	astrogi	aph Kön	issiuni	(/instr	ument?						
243	<in< td=""><td>strume</td><td>nt>Wolf's 1</td><td>L5cm Doppel</td><td>.astrog</td><td>raph Mär</td><td>zgasse<</td><td>/instru</td><td>iment></td><td></td></in<>	strume	nt>Wolf's 1	L5cm Doppel	.astrog	raph Mär	zgasse<	/instru	iment>						
244	<co< td=""><td>verage</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></co<>	verage	>												
245		<spati< td=""><td>al>0/1-3 1/</td><td>0 2-3 17-1</td><td>9 22-23</td><td>3 25-27</td><td>29-31 2</td><td>/4-6 67</td><td>81 85-8</td><td>7 99</td></spati<>	al>0/1-3 1/	0 2-3 17-1	9 22-23	3 25-27	29-31 2	/4-6 67	81 85-8	7 99					
	113-11	5 143													
246	173-17	5 190-	191 3/28 30	9-31 257 25	9 262-2	263 265-	267 331	333-33	6 338-33	9					
247	389-39	1 394-	395 449 451	L 531 534 5	43 556	564 566	570-57	1 606 6	24						
248	629-63	1 633-	634 637 639	670-671 6	87 689	691 736	-738 75	1-752 7	54						
249	757-75	9 4/11	6-117 119 1	1025 1027 1	.033-103	35 1042-	1044 10	46-1047							
250	1057-1	059 12	80 1287 129	00 1293 129	5 1313	1320 13	22-1323	1329-1	.331						
251	1348-1	350 15	37 1545 154	8 1552-155	3 1555	1570 15	73-1575	1803 2	051 2054	8					
252	2056-2	057 20	60 2063-206	5 2068 208	1 2083	2086-20	87 2089	2093-2	094						
253	2098-2	099 21	01 2104-210	05 2109 211	.1 2115	2121-21	23 2128	-2130 2	144-2146	8					
254	2148-2	149 21	60 2167 216	59-2171 217	7 2180	2182 21	85 2187	2194 2	196 2198	8					
255	2200-2	202 22	07 2215 221	18-2219 222	1-2223	2233 22	36-2238	2244-2	245						
256	2247-2	248 22	54 2260-226	1 2270-227	1 2273	2275 22	79 2306	2310 2	329	_					
the second se			EA 2272 227	14 0277 027	10 1307	2200 22	D3 3304	1400 1	1/1/2						

E.g. Coverage/spatial field in VO *RM registry*

~200 records (+ all CDS records)

9

Atelier HEIG Paris – Mai 2025 – P. Fernique

Time extension =TMOC 3.2 Time MO

TDIG/Apps joint effort 2018 - 2021

3.2 Time MOC conventions

In order to represent time coverage, we need to select a-priori the total range of time that we will cover with the notation. Following the same SMOC principles, we need to use a discrete time axis which each unit element of this axis has a constant duration. We adopt the Julian Date convention, very common in astronomy and a nominal resolution of 1μ s.

Discretization based on JD

We opt for the TCB reference according to the IAU 2006 definition (https://www.iau.org/static/resolutions/ IAU2006_Resol3.pdf). Our choice is motivated by the fact that this system is linear by construction and has been adopted by numerous missions such as Gaia.

• TCB reference

This way we can address 2^{62} cells in an unsigned 64-bit integer, i.e. a little bit more than 73000 years at 1μ resolution, enough for most astronomical time events.

 Able to address 73 000 years at 1µs resolution from JD=0

Time-Space combination

Our approach is to combine these two dimensions - time and space - by associating to each time period (coded according to the TMOC convention), its spatial region (coded according to the SMOC convention). For that, we interleave the information of time coverage with the information of space coverage for this period.

What about Energy ? => FMOC

 Reuse the same MOC principles to handle coverages on the electromagnetic axis

• Frequency values map in FMOC coding as an exponential expression in 60 bits (idea F.X.Pineau & B.Cecconi)

Proto

2021 -

It all works perfectly!

Now we have MOCs to describe coverage in space, time & energy, as well as combinations (currently 2 to 2).

e.g. : *t*16/6020-6022 *s*3/128 4/345-510

So why not extend our IVOA standards based on these generalized MOCs:

- HiPS3D: in progress...
- VOEvent 3.0 : currently under discussion
- ObsCore : discuss in this workshop
- VO Registry ?

HiPS3D already fully based on **SF-MOC** principles

What about ObsCore?

- MOC completes and/or duplicates some ObsCore fields.
 - s_ra/s_dec / s_region / s_fov
 - t_min / t_max / t_exptime
 - em_min / em_max
- Possible implementation:
 - Currently (proto): MOC ASCII serialization in s_region, but covering only spatial usecases
 - Proposal: define a dedicated ObsCore field whatever the MOC is [space, time, freq, or combinations) => "moc" ? "multid coverage" ?

Questions ? Comments ? Suggestions ?

