Asymptotically flat spacetimes admit both supertranslations and Lorentz transformations as asymptotic symmetries known as BMS symmetries. Furthermore, they admit super-Lorentz transformations, namely superrotations and superboosts, as outer symmetries associated with super-angular momentum and super-center-of-mass charges. In this talk, we present the flux-balance laws for all such (extended)...
Since the first detection of gravitational waves (GWs) from a binary black hole coalescence was announced in 2016, it has become increasingly pressing to provide high precision theoretical predictions for the modeling of GW templates. In this context, various methods have been employed to push the precision of the computations higher such as EOB Hamilitonian, PNEFT, Scattering Amplitudes etc....
Combining different techniques, we derive the logarithmic contributions to the two-body conservative dynamics. Those logarithms come from the conservative part of non linear gravitational-wave tails and their iterations. Explicit, original expressions are found for conservative dynamics logarithmic tail terms up to 6PN order by adopting both traditional PN calculations and effective field...
We will discuss an analytic rotating black hole in scalar tensor theories. The scalar gravitational degree of freedom will be related to the geodesics of the black hole spacetime.
Black holes mimickers, e.g. boson stars, are compact objects with similar properties to black holes. The gravitational wave signal emitted by a binary of such putative objects during the inspiral phase is difficult to distinguish from the one emitted by a black hole binary. Nevertheless, significant differences might appear in the post merger signal. Inspired by the known behavior of black...