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m The "tail" effects are very peculiar features of General Relativity?
< due to non-linearities, they have dissipative and conservative sectors,
— they take into account the whole history of the source,

< complicated to deal with: either use a peculiar action? or involving

iterations of Einstein's equations®.

Can we find a generic way to deal with tails ?

Spoiler: YES? |

< at least for the logarithmic effects of simple tails,
< using synergies between traditional PN methods and EFT,
— conserved energy computed for circular orbits up to 7PN.

2. Blanchet, S. Foffa, FL & R. Sturani, arXiv:1912.12359.

lsee eg. L. Blanchet & T.Damour, PRD 37(1988)1410.
%see eg. S. Foffa & R. Sturani, PRD 87(2012)044056.
3see eg. A. Le Tiec, L. Blanchet & B. Whiting, PRD 85(2012)064039.
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Effects of the tails in the energy
Why the log ?

The radiative tails

m Tails are the effects of the back-scattering of the GWSs on the
(quasi-)static curvature.
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< Their effects is known up to tails-of-tails-of-tails* (4.5PN).
4T. Marchand, L. Blanchet & G. Faye, CQG 33(2016)244.
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The radiative tails
The tails
Highe tails Why the log ?

Effects of the tails in the energy

m From the point of view of the source, GWs scatter and "kick" back
= modification of the energy (conservative effect).

<> Shows up at 4PN in the energy.



The radiative tails
The sim ails Effects of the tails in the energy
Higher or tails

Why the log ? Hand-wawing argument

m Let's consider a simple tail

= Sw/dt{l\/l/,-j(t)/tdtt/' /,.5.6)(t’)}.

m The log roughly comes from the propagation of the GWs

dt’
/WI’.(.G)(H) o, /dt’log|t’—t|/,-(j7)(t').
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Proof of the action
Higher order tails Contribution of the simple tails in the energy

A general action for the logs in simple tails

The simple tail's log contributions are described by the non-local action

]

In EFT language (ie. Fourier domain)

G2M dko | kol " 2 by~
S= 2e+4/ ( ) k32 {az ‘/L(ko)‘ t2

In traditional PN language (ie. temporal domain)

G’M dtdt’ g ¢ be (e ¢
&= ZCQM // = { “’(t)lf“)(t’)+C2J{+1)(t)J{“’(t')]

The two scales are related by c7g = e 7€ /u, and the ay and by read

e+ 1)(e+2) g (550 NG
%= ge=—noitnyn ™ b“(m) A
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What are the tails 7 Action !

Higher order tails Contribution of the simple tails in the energy

Proof of the action: EFT's way

m As shown in 3, there is an intrinsic link between the singular,
logarithmic and imaginary sectors of the simple tails and the
GW emission-absorption process :

d-3

oo

AnG d*k  kioky—2 ikl
Aea(lo) = — Z c2t+241 / (2r)3 k2 — k2 — ic M7 ly1—2) (ko) haqur—2) (— o)

16M7¢
o 9C2J Jijr—2)(ko) Jki(r—2)(—ko) | ,

where H;jkl and I'Izjk' encode appropriate polarizations, and depend on k,,.

= Computing it, one recovers the action presented.

5S. Foffa & R. Sturani, arXiv:1907.02869.




What are the tails 7 Action !

Higher order tails Contribution of the simple tails in the energy

Proof of the action: traditional PN's way

m S has also been derived by traditional PN methods, up to 1PN.
< How to do that ? The hard way !

=> lterate the vacuum Einstein's equations to have the tail part of the
metric, and expand it in the near-zone (ie. r — 0) limit, eg.

: wr\ ~— (N g ¢
h2ta.|~—8*G—Z5—M|og(é.E)Z(€!) aL{ ( /c) — (t+ /C)]7

e
(=2

apply a convenient gauge transformation, so h2 < h2 i h2 A

4l

compute the 1PN relative acceleration of a test particle via

d iy VM it vhvY
a; “‘—"IL‘*—':“: = § ———i &'g;w )
—8uv vC;/ —8uv VC;/

= derive the action which variation reads 6S = [dt ma’dy'.

Francois Larrouturou 7/15



Action !
Proof of the action

Contribution of the simple tails: general orbits

m Defining Z, (t Pfflt 7 I.(t"), the logarithmic tail contribute as

oo G2 1 2
LA sziﬁ {M/££+1)I£e+1) oM Z(_)plieﬂ p)Il(_Z+1+P)

=2 p=1

g/\/” (EDZED _opp ey i 0l LI 242) | 5F, }

+ (I, Zu, ae) = (Ju, T, be/ )

<5 0E; is a non-trivial correction which logs contribute only for
non-circular orbits®, but yields a DC contribution that reads on

average
S EE 2GM
<Z 2014 <a€ 0B+ = 5E€)> =

B=12

51t was originally discovered for £ = 2 in L. Bernard et al., PRD 95(2017)044026.



Action !
Proof of the action

Contribution of the simple tails: circular orbits

m In the adiabatic approximation for quasi-circular orbits,
Z1 = —2(log(rw/c) + ve) I, so, in terms of the 1PN parameter

xi= (Gmw/c3)?/3,
The simple tail’s logs contribute as

por M s [M4B (4983 656 \ | ( 1067284  Ol7E2 | 32384 )\ ,
=——xlogx|— —[—+ —v | x — v o) x
2 S 8505 945 135

= 15 35 5
16785520373 1424384 r 2131 , 41161601
= log| — |+ —7" — ——— | v
2338875 1575 ro 42 51030

13476541 289666
el V3 x3+(9(><4) 5
5670 1215

where the blue contributions were already known.’

D ry is the unphysical UV cutoff scale, it should disappear ! (D)

“see notably A. Le Tiec, L. Blanchet & B. Whiting, PRD 85(2012)064039,
and D. Bini & T.Damour, PRD 89(2014)064063.
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Using the redshift variable
Dominant logs

Contribution of the higher order tails

m The (tails)"*! arise at 1.5PN beyond the (tails)":

= the tails-of-tails contribute at 5.5PN, 6.5PN...
and don’t bear log dependencies, at least up to 7.5PN,2

= the tails-of-tails-of-tails hit at 7PN, with log and log? contribution !
But no general action yet, contrary to the simple tails...

What we should do :

< Proceed as when proving the action in
traditional PN's way, but iterating two
times more the Einstein's equations...

~~ work currently in progress
with L. Blanchet and T. Marchand.

8. Blanchet, G. Faye & B. Whiting, PRD 90(2014)044017.
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Contribution of the higher order tails

Dominant logs

Need to take a step back 7 Let's redshift your mind !

m At leading order the (tails)® only contributes at ©> = test mass limit.

< Quantities in the test mass limit are known analytically up to
21.5PN,° can we use them ?
u 10

= Yes | Let's use the "Detweiler’s redshift variable".

< For a system with helicoidal symmetry
(fe. with a Killing vector K = 0y + Q0,).

< z defined as the redshift of a photon
emitted by one of the masses, observed at
infinity along the rotation axe. Al

< z~! can also be seen as the invariant RO
associated with K.

9S. Hooper, C. Kavanagh & A. C. Ottewill, PRD 93(2016)044010.
10S. Detweiler, PRD 77(2008)124026.
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Contribution of the higher order tails

Dominant logs

From redshift to conserved energy

m In the test mass limit, the redshift reads z; = /1 — 3x + vzsg + ...
= Using the first law of binary point-like particle mechanics

M —wdd =z0my + 25 6my,

one can express the energy as a function of zgg.!!

The logs contributions are contained in & = v zsp /2 — v x z{¢ /3.
= With the results of 12, we can compute the contribution of (tails)3.

The leading (tails)® contributes as

plos m? 5 356096 108649792 | 1424384 ( ( r s
=——x logx |[— ogx — ————— og [ — ) —ve —lo .
(tails)3 2 E 1575 ° 55125 1575 E\n/) = 8

1A Le Tiec, E. Barausse & A. Buonanno, PRL 108(2011)131103.
12S. Hooper, C. Kavanagh & A. C. Ottewill, PRD 93(2016)044010.
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Contribution of the higher order tails
Using the redshift variable

Computing the dominant log contribution

m In general, the log"(x) arises at (3n+1)PN (cf. the log? at 7PN).

m It is possible to compute their contributions via renormalization

group techniques: the Bondi mass and angular momentum run as'3

M 2G2M
s 3 26245 - 2P0 1+ 1],

e e
dJi 8G*M
. dLu):_ ik [/ﬂ/is) D6 +,(2),(3)}_

= But the quadrupole scales following
> (-B1G2M?)" LN 214
Ii(t, 1) = B e L e =R e
i(t; 1) ,?:o o Sk (o), . DI

thus one can integrate M(u) and J'(p).

BW. D. Goldberger, A. Ross & I. Z. Rothstein, PRD 89(2014)124033.
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Contribution of the higher order tails
Using the redshift variable

Computing the dominant log contribution

m Averaging over one period and reducing in circular orbits, we obtain
expressions for E = M — m and J in terms of v = Gm/r and w.

< But E and J are linked by the "thermodynamical" relation
dE_ &
dw dw’
which allows to derived y(w).
= Thus we can express E(x) and J(x) (where x = (Gw/c%)?/3):

mux | 64y <= 6n+ 1 F s
b s Hio, lf Z T 4s)" ol log” x] ;
n=1 -

Jdom e —

m2y | 64y <= 3n+ 2
Z n!

(45,)”71 xtlae” x} .

n=1
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Conclusion & final result

m Tails are interesting non-linear effects arising in GR, with a peculiar
logarithmic behaviour.

— We have derived the log contributions of simple tails in the energy,
<+ and, using different approaches, the leading (tails)® and log” ones.

The logarithmic contributions of the tails read

oz m2 . 448 (4988 656 1067284 914782 32384 ,\ ,
s = ———X logx| — — | — + —v | x — v+ vo ) x
2 15 3B 5 8505 945 135

85220054357 _ 1424384 (2131 , 41161601
16372125 Ty = e 2 " 51030 )
13476541 , 289666 5 35696 .

= v — v — log x | x

5670 1215 1575

646n+1
+Z
n!

B 1 il
4p,)" loanJrH} ’

(D But most of all, this work shows the great potential of synergies (D
between traditional PN methods and EFT ones.
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