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Motivations for the 4PN waveform

Needed for future detectors (e.g. LISA).

More accurate determination of the astrophysical parameters

(masses, spins).

Comparison with numerical relativity and self-force calculations.

Better comparison between GR and alternative theories of gravity.
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Combined posteriors for GW150914, GW151226 & GW170104.
Figure from LSC & Virgo, PRL 118(2018)221101.
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The post-Newtonian formalism

v v v
Inspiralling phase Merger Vibration
Post-Newtonian approximation Numerical relativity Perturbed black hole

PN formalism:

o Perturbative expansion of the equations of GR.

) 4
67TGT’“’ with 7H = |g|T"" + C—Aw(hvah782h)

OpHY —
h 167G

A
o Weak field, small velocities : (v/c) < 1.

e 4™ PN order — O(1/c®) beyond the quadrupole formula.
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Different space zones in the PN formalism

Exterior zone
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Far zone

Buffer zone




The GW phase : what is known 7
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PN parameter : z = (

Angular frequency : w
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The GW phase : what is known 7
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Brief overview of the steps to compute the phase

p(w)
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Brief overview of the steps to compute the phase
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Brief overview of the steps to compute the phase
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Brief overview of the steps to compute the phase
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Brief overview of the steps to compute the phase
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Computation of the potentials

Sources: N ,

00 4T T0i N

= D) ) 0 = ) 045 = T
C C

g

For point particles o oc 6@ (& — 774).

Potentials:
The potentials fully parametrize the metric.

ov = —4rGo

~

DWU = —47TG(O‘1']' — 6ij0-kk) — 8ZV8JV
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Computation of the potentials

Sources: 00 N o;
77 7
s+ T oo — T
- 2 ) (2 ) 1] —
c c

g

For point particles o oc 6@ (& — 774).

Potentials:
The potentials fully parametrize the metric.

ov = —4rGo

~

OW;; = —4nG(oi; — ijork) — O;VO;V
Defining 81; = 0/0y?,

1 2

&V@]V = G2m1 mo 81i82jﬁ + ... r
172

< Need to know how to compute O~ X

r1ir2
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Computation of the kernels and matching

1 T
r17r9 27‘2

1) Find a particular solution.

1., 1

1
Ag=— Af=yg *
172

At Newtonian order, g = In(ry + ro + r12).
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Computation of the kernels and matching

r17r9 27‘2

71
1) Find a particular solution.

1., 1

1
Ag=— Af=yg X
172

At Newtonian order, g = In(ry + ro + r12).

2) Match it to the far-zone in order to have .# (P
[Blanchet Living Review (2014)] \\
— Enables to compute some of the required potentials (5 /

— Doesn’t work for more complicated ones (no analytic formula).
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Source multipole moments

~00 | ~ii —0i

70 4 7 7 _

Y= — Y= Yii = =74
2 J

¥, 3; and ¥;; contain the o, 0, 0;; and the potentials {V, V;, VVZ-]-, o

Multipole moments : |Blanchet Living Review (2014)]

B 1
I; = FP /de <L> / dz {5@331;2 + leZ + Be xULZU] (x,u-|- ﬁ)
B=0 To c

Similar expression for the current multipoles Jr,.

— Some potentials are not known in all space = IBP = surface terms.

1 _pv _ 122 A puv
T = |g|T"" + g A
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The mass quadrupole

3 types of terms:?

e compact support: 168 terms (o oc 6G)(Z — 7/4))

/ BriioV

@ non-compact support: 419 terms

/ Bz rB2 W0,V

@ surface: 67 terms

/ Pz rPEY A(V?)

2For 4PN, 654 terms while "only" 92 for 3PN
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The mass quadrupole

3 types of terms:?

e compact support: 168 terms (o oc 6G)(Z — 7/4))

/ BriioV

@ non-compact support: 419 terms

/d3mr 29 W0, BV

L @ (z_ 7
e surface: 67 terms Oap (7’1) =50 07 (7 — 1)

/ Brr l’ZJA(VZ)

— Had to take into account distributional parts.
We completed the integration of the mass quadrupole with the
Hadamard regularisation.

2For 4PN, 654 terms while "only" 92 for 3PN
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The regularisation problems : UV and IR
— Formalism written using the Hadamard Partie Finie regularisation.

B 1
I, =| FP /d?’x <T> / dz [(5433,;2 + leE + Be J?”LE”] (a:,u—!— ﬁ)
B=0 To C

— Crucial to distinguish between UV (on the bodies) and IR (infinity)
regularisations.

@ UV : bodies modelled as point particles.

@ IR : need for a regularisation at infinity in the formalism itself.

— But dimensional regularisation is more suitable at high order (3PN
for UV and 4PN for IR)

21 = 1@ — [(Had)
[PRD 71, 124004 (2005)]

— Now computing the UV differences on the mass quadrupole.
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Next steps to achieve the computation of the mass
quadrupole

e Complete the computation of the UV regularised (in d-dim) L;;.

o Compute the IR difference for the mass quadrupole.

o Reduce it into the CoM frame for circular orbits.
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Next steps to achieve the computation of the 4PN phase

e Compute the other multipoles (using the same method), 3 < ¢ <6

B
I; = FP /d3x (L) / dz {65:@2 + —szE + Be m”LE”} (ac,u + ﬁ) .
B=0 ro 1 c

o Compute the non-linear terms.
U, =19 + (non linear terms)
ij = Lij

o Compute the flux

1 1 1
7= [—U(l)U( )4 = (—U@)U@) + —Gv(l.)v(l.)> to

C5 5 W 189 ijk “ijk 45 "W Y

@ Deduce the phase through the balance equation

)
I

dt 7 (z)
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Summary

What has been done:

o We computed the potentials required for the 4PN multipoles.

@ We computed the mass quadrupole in 3d.

e Now completing the computation the UV (dim-reg/Had) difference.
What is left to do for the mass quadrupole:

e Compute the IR (dim-reg/Had) difference.

e Reduce the mass quadrupole in the CoM frame for circular orbits.
What is left to do for the 4PN flux:

e Compute the other multipoles (much easier).

o Compute non-linear terms.

@ Reduce these quantities in the CoM frame for circular orbits.

o Compute the flux.

@ Deduce the phase.
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