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Motivations for the 4PN waveform

Needed for future detectors (e.g. LISA).

More accurate determination of the astrophysical parameters
(masses, spins).

Comparison with numerical relativity and self-force calculations.

Better comparison between GR and alternative theories of gravity.

Combined posteriors for GW150914, GW151226 & GW170104.
Figure from LSC & Virgo, PRL 118(2018)221101.
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The post-Newtonian formalism

PN formalism:

Perturbative expansion of the equations of GR.

2hµν =
16πG

c4
τµν with τµν = |g|Tµν +

c4

16πG
Λµν(h, ∂h, ∂2h)

Weak �eld, small velocities : (v/c)� 1.

4th PN order → O(1/c8) beyond the quadrupole formula.
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Di�erent space zones in the PN formalism

Exterior zone

Far zone

Bu�er zone
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The GW phase : what is known ?

PN parameter : x ≡
(
GMω

c3

)2/3

Angular frequency : ω

ϕ =

∫
ω dt

ϕ = − 1

32νx5/2

[
1 + ϕ1PNx+ ϕ1.5PNx

3/2 + ϕ2PNx
2 + ϕ2.5PNx

5/2

+ϕ3PNx
3 + ϕ3.5PNx

7/2 + ϕ4PNx
4 +O(x9/2)

]
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The GW phase : what is known ?

ϕ1PN =
3715

1008
+

55

12
ν

ϕ1.5PN = −10π

ϕ2PN =
15293365

1016064
+

27145

1008
ν +

3085

144
ν2

ϕ2.5PN =

(
38645

1344
− 65

16
ν

)
π ln(x)

ϕ3PN =
12348611926451

18776862720
− 160

3
π2 − 1712

21
γE −

3424

21
ln 2

+

(
−15737765635

12192768
+

2255

48
π2
)
ν +

76055

6912
ν2 − 127825

5184
ν3

− 856

21
ln(x)

ϕ3.5PN =

(
77096675

2032128
+

378515

12096
ν − 74045

6048
ν2
)
π
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Brief overview of the steps to compute the phase

ϕ(ω)

F = −dE
dt

F =
G

c5

[
1

5
U

(1)
ij U

(1)
ij +

1

c2

(
1

189
U

(2)
ijkU

(2)
ijk +

16

45
V

(1)
ij V

(1)
ij

)
+ . . .

]
Uij = I

(2)
ij + (non linear terms)

Iij =

∫
d3x x̂ij

[
σ − 1

πGc2
∂kV ∂kV + . . .

]

σ = ρ+ . . . , V = −4πG2−1σ =
Gm1

r1
+ . . .
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Computation of the potentials

Sources:

σ =
T 00 + T ii

c2
, σi =

T 0i

c
, σij = T ij

For point particles σ ∝ δ(3)(~x− ~yA).

Potentials:

The potentials fully parametrize the metric.

2V = −4πGσ

2Ŵij = −4πG(σij − δijσkk)− ∂iV ∂jV

De�ning ∂1i ≡ ∂/∂yi1,

∂iV ∂jV = G2m1m2 ∂1i∂2j
1

r1r2
+ . . .

↪→ Need to know how to compute 2−1 1
r1r2
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Computation of the kernels and matching

2G =
1

r1r2
, 2F 12 =

r1
2r2

. . .

1) Find a particular solution.

G = g +
1

c2
∂2t f +O

(
1

c4

)
∆g =

1

r1r2
∆f = g

At Newtonian order, g = ln(r1 + r2 + r12).

2) Match it to the far-zone in order to have M (P ) = P .
[Blanchet Living Review (2014)]

↪→ Enables to compute some of the required potentials (5/9).
↪→ Doesn't work for more complicated ones (no analytic formula).
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Source multipole moments

Σ =
τ̄00 + τ̄ ii

c2
Σi =

τ̄0i

c
Σij = τ̄ ij

Σ, Σi and Σij contain the σ, σi, σij and the potentials {V, Vi, Ŵij , . . . }1

Multipole moments : [Blanchet Living Review (2014)]

IL = FP
B=0

∫
d3x

(
r

r0

)B ∫ 1

−1

dz

[
δ`x̂LΣ +

α`

c2
x̂iLΣ̇i +

β`
c4
x̂ijLΣ̈ij

](
x, u+

zr

c

)
Similar expression for the current multipoles JL.

↪→ Some potentials are not known in all space ⇒ IBP ⇒ surface terms.

1τµν = |g|Tµν + c4

16πG
Λµν
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The mass quadrupole

3 types of terms:2

compact support: 168 terms (σ ∝ δ(3)(~x− ~yA))∫
d3x x̂ijσV

non-compact support: 419 terms∫
d3x rBx̂ij Ŵab∂abV

surface: 67 terms ∫
d3x rBx̂ij∆(V 2)

↪→ Had to take into account distributional parts.
We completed the integration of the mass quadrupole with the
Hadamard regularisation.

∂ab

(
1

r1

)∣∣∣∣∣
Distr

= −4π

3
δab δ

(3)(~x− ~y1)

2For 4PN, 654 terms while "only" 92 for 3PN
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The regularisation problems : UV and IR
↪→ Formalism written using the Hadamard Partie Finie regularisation.

IL = FP
B=0

∫
d3x

(
r

r0

)B ∫ 1

−1

dz

[
δ`x̂LΣ +

α`

c2
x̂iLΣ̇i +

β`
c4
x̂ijLΣ̈ij

](
x, u+

zr

c

)

↪→ Crucial to distinguish between UV (on the bodies) and IR (in�nity)
regularisations.

UV : bodies modelled as point particles.

IR : need for a regularisation at in�nity in the formalism itself.

↪→ But dimensional regularisation is more suitable at high order (3PN
for UV and 4PN for IR)

DI ≡ I(d) − I(Had)

[PRD 71, 124004 (2005)]

↪→ Now computing the UV di�erences on the mass quadrupole.
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Next steps to achieve the computation of the mass
quadrupole

Complete the computation of the UV regularised (in d-dim) Iij .

Compute the IR di�erence for the mass quadrupole.

Reduce it into the CoM frame for circular orbits.

Quentin Henry GdR 2020 February 4th 2020 16 / 18



Next steps to achieve the computation of the 4PN phase

Compute the other multipoles (using the same method), 3 6 ` 6 6

IL = FP
B=0

∫
d3x

(
r

r0

)B ∫ 1

−1

dz

[
δ`x̂LΣ +

α`

c2
x̂iLΣ̇i +

β`
c4
x̂ijLΣ̈ij

](
x, u+

zr

c

)
.

Compute the non-linear terms.

Uij = I
(2)
ij + (non linear terms)

Compute the �ux

F =
G

c5

[
1

5
U

(1)
ij U

(1)
ij +

1

c2

(
1

189
U

(2)
ijkU

(2)
ijk +

16

45
V

(1)
ij V

(1)
ij

)
+ . . .

]
.

Deduce the phase through the balance equation

F = −dE
dt

⇒ ϕ = −
∫
ω(x)

dE/dx

F (x)
dx.
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Summary

What has been done:

We computed the potentials required for the 4PN multipoles.

We computed the mass quadrupole in 3d.

Now completing the computation the UV (dim-reg/Had) di�erence.

What is left to do for the mass quadrupole:

Compute the IR (dim-reg/Had) di�erence.

Reduce the mass quadrupole in the CoM frame for circular orbits.

What is left to do for the 4PN �ux:

Compute the other multipoles (much easier).

Compute non-linear terms.

Reduce these quantities in the CoM frame for circular orbits.

Compute the �ux.

Deduce the phase.
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