The 4PN phase of non-spinning compact binary systems: where are we ?

Quentin Henry
Institut d'Astrophysique de Paris

In collaboration with : Tanguy Marchand, François Larrouturou, Sylvain Marsat, Guillaume Faye, Luc Blanchet

February $4^{\text {th }} 2020$

Outline

1) Introduction \& overview of the PN formalism
2) What has been done
3) What is left to do
4) Summary and conclusion

Motivations for the 4PN waveform

- Needed for future detectors (e.g. LISA).
- More accurate determination of the astrophysical parameters (masses, spins).
- Comparison with numerical relativity and self-force calculations.
- Better comparison between GR and alternative theories of gravity.

Combined posteriors for GW150914, GW151226 \& GW170104.
Figure from LSC \& Virgo, PRL 118(2018)221101.

The post-Newtonian formalism

PN formalism:

- Perturbative expansion of the equations of GR.

$$
\square h^{\mu \nu}=\frac{16 \pi G}{c^{4}} \tau^{\mu \nu} \quad \text { with } \quad \tau^{\mu \nu}=|g| T^{\mu \nu}+\frac{c^{4}}{16 \pi G} \Lambda^{\mu \nu}\left(h, \partial h, \partial^{2} h\right)
$$

- Weak field, small velocities : $(v / c) \ll 1$.
- $4^{\text {th }} \mathrm{PN}$ order $\rightarrow O\left(1 / c^{8}\right)$ beyond the quadrupole formula.

Different space zones in the PN formalism

Exterior zone
Far zone
Buffer zone

The GW phase : what is known ?

PN parameter : $x \equiv\left(\frac{G M \omega}{c^{3}}\right)^{2 / 3}$
Angular frequency : ω

$$
\varphi=\int \omega \mathrm{d} t
$$

$$
\begin{aligned}
\varphi=-\frac{1}{32 \nu x^{5 / 2}}[1 & +\varphi_{1 \mathrm{PN}} x+\varphi_{1.5 \mathrm{PN}} x^{3 / 2}+\varphi_{2 \mathrm{PN}} x^{2}+\varphi_{2.5 \mathrm{PN}} x^{5 / 2} \\
& \left.+\varphi_{3 \mathrm{PN}} x^{3}+\varphi_{3.5 \mathrm{PN}} x^{7 / 2}+\varphi_{4 \mathrm{PN}} x^{4}+O\left(x^{9 / 2}\right)\right]
\end{aligned}
$$

The GW phase : what is known ?

$$
\begin{aligned}
\varphi_{1 \mathrm{PN}} & =\frac{3715}{1008}+\frac{55}{12} \nu \\
\varphi_{1.5 \mathrm{PN}} & =-10 \pi \\
\varphi_{2 \mathrm{PN}} & =\frac{15293365}{1016064}+\frac{27145}{1008} \nu+\frac{3085}{144} \nu^{2} \\
\varphi_{2.5 \mathrm{PN}} & =\left(\frac{38645}{1344}-\frac{65}{16} \nu\right) \pi \ln (x) \\
\varphi_{3 \mathrm{PN}} & =\frac{12348611926451}{18776862720}-\frac{160}{3} \pi^{2}-\frac{1712}{21} \gamma_{\mathrm{E}}-\frac{3424}{21} \ln 2 \\
& +\left(-\frac{15737765635}{12192768}+\frac{2255}{48} \pi^{2}\right) \nu+\frac{76055}{6912} \nu^{2}-\frac{127825}{5184} \nu^{3} \\
& -\frac{856}{21} \ln (x) \\
\varphi_{3.5 \mathrm{PN}} & =\left(\frac{77096675}{2032128}+\frac{378515}{12096} \nu-\frac{74045}{6048} \nu^{2}\right) \pi
\end{aligned}
$$

Brief overview of the steps to compute the phase

$$
\varphi(\omega)
$$

Brief overview of the steps to compute the phase

$$
\varphi(\omega)
$$

$$
\mathscr{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t}
$$

Brief overview of the steps to compute the phase

$$
\begin{gathered}
\varphi(\omega) \\
\mathscr{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t} \\
\mathscr{F}=\frac{G}{c^{5}}\left[\frac{1}{5} \mathrm{U}_{i j}^{(1)} \mathrm{U}_{i j}^{(1)}+\frac{1}{c^{2}}\left(\frac{1}{189} \mathrm{U}_{i j k}^{(2)} \mathrm{U}_{i j k}^{(2)}+\frac{16}{45} \mathrm{~V}_{i j}^{(1)} \mathrm{V}_{i j}^{(1)}\right)+\ldots\right]
\end{gathered}
$$

Brief overview of the steps to compute the phase

$$
\begin{gathered}
\varphi(\omega) \\
\mathscr{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t} \\
\mathscr{F}=\frac{G}{c^{5}}\left[\frac{1}{5} \mathrm{U}_{i j}^{(1)} \mathrm{U}_{i j}^{(1)}+\frac{1}{c^{2}}\left(\frac{1}{189} \mathrm{U}_{i j k}^{(2)} \mathrm{U}_{i j k}^{(2)}+\frac{16}{45} \mathrm{~V}_{i j}^{(1)} \mathrm{V}_{i j}^{(1)}\right)+\ldots\right] \\
\mathrm{U}_{i j}=\mathrm{I}_{i j}^{(2)}+\text { (non linear terms) }
\end{gathered}
$$

Brief overview of the steps to compute the phase

$$
\begin{gathered}
\varphi(\omega) \\
\mathscr{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t} \\
\mathscr{F}=\frac{G}{c^{5}}\left[\frac{1}{5} \mathrm{U}_{i j}^{(1)} \mathrm{U}_{i j}^{(1)}+\frac{1}{c^{2}}\left(\frac{1}{189} \mathrm{U}_{i j k}^{(2)} \mathrm{U}_{i j k}^{(2)}+\frac{16}{45} \mathrm{~V}_{i j}^{(1)} \mathrm{V}_{i j}^{(1)}\right)+\ldots\right] \\
\mathrm{U}_{i j}=\mathrm{I}_{i j}^{(2)}+(\text { non linear terms }) \\
\mathrm{I}_{i j}=\int \mathrm{d}^{3} x \hat{x}^{i j}\left[\sigma-\frac{1}{\pi G c^{2}} \partial_{k} V \partial_{k} V+\ldots\right]
\end{gathered}
$$

Brief overview of the steps to compute the phase

$$
\begin{gathered}
\varphi(\omega) \\
\mathscr{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t} \\
\mathscr{F}=\frac{G}{c^{5}}\left[\frac{1}{5} \mathrm{U}_{i j}^{(1)} \mathrm{U}_{i j}^{(1)}+\frac{1}{c^{2}}\left(\frac{1}{189} \mathrm{U}_{i j k}^{(2)} \mathrm{U}_{i j k}^{(2)}+\frac{16}{45} \mathrm{~V}_{i j}^{(1)} \mathrm{V}_{i j}^{(1)}\right)+\ldots\right] \\
\mathrm{U}_{i j}=\mathrm{I}_{i j}^{(2)}+(\text { non linear terms }) \\
\mathrm{I}_{i j}=\int \mathrm{d}^{3} x \hat{x}^{i j}\left[\sigma-\frac{1}{\pi G c^{2}} \partial_{k} V \partial_{k} V+\ldots\right] \\
\sigma=\rho+\ldots, \quad V=-4 \pi G \square^{-1} \sigma=\frac{G m_{1}}{r_{1}}+\ldots
\end{gathered}
$$

Outline

1) Introduction \& overview of the PN formalism
2) What has been done
3) What is left to do
4) Summary and conclusion

Computation of the potentials

Sources:

$$
\sigma=\frac{T^{00}+T^{i i}}{c^{2}}, \quad \sigma_{i}=\frac{T^{0 i}}{c}, \quad \sigma_{i j}=T^{i j}
$$

For point particles $\sigma \propto \delta^{(3)}\left(\vec{x}-\vec{y}_{A}\right)$.
Potentials:
The potentials fully parametrize the metric.

$$
\begin{aligned}
\square V & =-4 \pi G \sigma \\
\square \hat{W}_{i j} & =-4 \pi G\left(\sigma_{i j}-\delta_{i j} \sigma_{k k}\right)-\partial_{i} V \partial_{j} V
\end{aligned}
$$

Computation of the potentials

Sources:

$$
\sigma=\frac{T^{00}+T^{i i}}{c^{2}}, \quad \sigma_{i}=\frac{T^{0 i}}{c}, \quad \sigma_{i j}=T^{i j}
$$

For point particles $\sigma \propto \delta^{(3)}\left(\vec{x}-\vec{y}_{A}\right)$.
Potentials:
The potentials fully parametrize the metric.

$$
\begin{aligned}
\square V & =-4 \pi G \sigma \\
\square \hat{W}_{i j} & =-4 \pi G\left(\sigma_{i j}-\delta_{i j} \sigma_{k k}\right)-\partial_{i} V \partial_{j} V
\end{aligned}
$$

Defining $\partial_{1 i} \equiv \partial / \partial y_{1}^{i}$,

$$
\partial_{i} V \partial_{j} V=G^{2} m_{1} m_{2} \partial_{1 i} \partial_{2 j} \frac{1}{r_{1} r_{2}}+\ldots
$$

\hookrightarrow Need to know how to compute $\square^{-1} \frac{1}{r_{1} r_{2}}$

Computation of the kernels and matching

$$
\square \mathscr{G}=\frac{1}{r_{1} r_{2}}, \quad \square F^{12}=\frac{r_{1}}{2 r_{2}}
$$

1) Find a particular solution.

$$
\begin{gathered}
\mathscr{G}=g+\frac{1}{c^{2}} \partial_{t}^{2} f+O\left(\frac{1}{c^{4}}\right) \\
\Delta g=\frac{1}{r_{1} r_{2}} \quad \Delta f=g
\end{gathered}
$$

At Newtonian order, $g=\ln \left(r_{1}+r_{2}+r_{12}\right)$.

Computation of the kernels and matching

$$
\square \mathscr{G}=\frac{1}{r_{1} r_{2}}, \quad \square F^{12}=\frac{r_{1}}{2 r_{2}}
$$

1) Find a particular solution.

$$
\begin{gathered}
\mathscr{G}=g+\frac{1}{c^{2}} \partial_{t}^{2} f+O\left(\frac{1}{c^{4}}\right) \\
\Delta g=\frac{1}{r_{1} r_{2}} \quad \Delta f=g
\end{gathered}
$$

At Newtonian order, $g=\ln \left(r_{1}+r_{2}+r_{12}\right)$.
2) Match it to the far-zone in order to have $\mathscr{M}(P)=P$. [Blanchet Living Review (2014)]
\hookrightarrow Enables to compute some of the required potentials $(5 / 9)$.
\hookrightarrow Doesn't work for more complicated ones (no analytic formula).

Source multipole moments

$$
\Sigma=\frac{\bar{\tau}^{00}+\bar{\tau}^{i i}}{c^{2}} \quad \Sigma_{i}=\frac{\bar{\tau}^{0 i}}{c} \quad \Sigma_{i j}=\bar{\tau}^{i j}
$$

Σ, Σ_{i} and $\Sigma_{i j}$ contain the $\sigma, \sigma_{i}, \sigma_{i j}$ and the potentials $\left\{V, V_{i}, \hat{W}_{i j}, \ldots\right\}^{1}$

Multipole moments : [Blanchet Living Review (2014)]

$$
\mathrm{I}_{L}=\mathrm{FP}_{B=0} \int \mathrm{~d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \int_{-1}^{1} \mathrm{~d} z\left[\delta_{\ell} \hat{x}_{L} \Sigma+\frac{\alpha_{\ell}}{c^{2}} \hat{x}_{i L} \dot{\Sigma}_{i}+\frac{\beta_{\ell}}{c^{4}} \hat{x}_{i j L} \ddot{\Sigma}_{i j}\right]\left(x, u+\frac{z r}{c}\right)
$$

Similar expression for the current multipoles J_{L}.
\hookrightarrow Some potentials are not known in all space \Rightarrow IBP \Rightarrow surface terms.

$$
{ }^{1} \tau^{\mu \nu}=|g| T^{\mu \nu}+\frac{c^{4}}{16 \pi G} \Lambda^{\mu \nu}
$$

The mass quadrupole

3 types of terms: ${ }^{2}$

- compact support: 168 terms $\quad\left(\sigma \propto \delta^{(3)}\left(\vec{x}-\vec{y}_{A}\right)\right)$

$$
\int \mathrm{d}^{3} x \hat{x}^{i j} \sigma V
$$

- non-compact support: 419 terms

$$
\int \mathrm{d}^{3} x r^{B} \hat{x}^{i j} \hat{W}_{a b} \partial_{a b} V
$$

- surface: 67 terms

$$
\int \mathrm{d}^{3} x r^{B} \hat{x}^{i j} \Delta\left(V^{2}\right)
$$

[^0]
The mass quadrupole

3 types of terms: ${ }^{2}$

- compact support: 168 terms $\quad\left(\sigma \propto \delta^{(3)}\left(\vec{x}-\vec{y}_{A}\right)\right)$

$$
\int \mathrm{d}^{3} x \hat{x}^{i j} \sigma V
$$

- non-compact support: 419 terms

$$
\begin{aligned}
& \int \mathrm{d}^{3} x r^{B} \hat{x}^{i j} \hat{W}_{a b} \partial_{a b} V \\
& \int \mathrm{~d}^{3} x r^{B} \hat{x}^{i j} \Delta\left(V^{2}\right)
\end{aligned}
$$

\hookrightarrow Had to take into account distributional parts.
We completed the integration of the mass quadrupole with the Hadamard regularisation.

[^1]
The regularisation problems : UV and IR

\hookrightarrow Formalism written using the Hadamard Partie Finie regularisation.

$$
\mathrm{I}_{L}=\underset{B=0}{\mathrm{FP}} \int \mathrm{~d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \int_{-1}^{1} \mathrm{~d} z\left[\delta_{\ell} \hat{x}_{L} \Sigma+\frac{\alpha_{\ell}}{c^{2}} \hat{x}_{i L} \dot{\Sigma}_{i}+\frac{\beta_{\ell}}{c^{4}} \hat{x}_{i j L} \ddot{\Sigma}_{i j}\right]\left(x, u+\frac{z r}{c}\right)
$$

\hookrightarrow Crucial to distinguish between UV (on the bodies) and IR (infinity) regularisations.

- UV : bodies modelled as point particles.
- IR : need for a regularisation at infinity in the formalism itself.
\hookrightarrow But dimensional regularisation is more suitable at high order (3PN for UV and 4PN for IR)

$$
\mathscr{D} I \equiv I^{(d)}-I^{(\mathrm{Had})}
$$

[PRD 71, 124004 (2005)]
\hookrightarrow Now computing the UV differences on the mass quadrupole.

Outline

1) Introduction \& overview of the PN formalism
2) What has been done
3) What is left to do
4) Summary and conclusion

Next steps to achieve the computation of the mass quadrupole

- Complete the computation of the UV regularised (in d-dim) $\mathrm{I}_{i j}$.
- Compute the IR difference for the mass quadrupole.
- Reduce it into the CoM frame for circular orbits.

Next steps to achieve the computation of the 4PN phase

- Compute the other multipoles (using the same method), $3 \leqslant \ell \leqslant 6$
$\mathrm{I}_{L}=\underset{B=0}{\mathrm{FP}} \int \mathrm{d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \int_{-1}^{1} \mathrm{~d} z\left[\delta_{\ell} \hat{x}_{L} \Sigma+\frac{\alpha_{\ell}}{c^{2}} \hat{x}_{i L} \dot{\Sigma}_{i}+\frac{\beta_{\ell}}{c^{4}} \hat{x}_{i j L} \ddot{\Sigma}_{i j}\right]\left(x, u+\frac{z r}{c}\right)$.
- Compute the non-linear terms.

$$
\mathrm{U}_{i j}=\mathrm{I}_{i j}^{(2)}+(\text { non linear terms })
$$

- Compute the flux

$$
\mathscr{F}=\frac{G}{c^{5}}\left[\frac{1}{5} \mathrm{U}_{i j}^{(1)} \mathrm{U}_{i j}^{(1)}+\frac{1}{c^{2}}\left(\frac{1}{189} \mathrm{U}_{i j k}^{(2)} \mathrm{U}_{i j k}^{(2)}+\frac{16}{45} \mathrm{~V}_{i j}^{(1)} \mathrm{V}_{i j}^{(1)}\right)+\ldots\right]
$$

- Deduce the phase through the balance equation

$$
\mathscr{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t} \quad \Rightarrow \quad \varphi=-\int \omega(x) \frac{\mathrm{d} E / \mathrm{d} x}{\mathscr{F}(x)} \mathrm{d} x .
$$

Summary

What has been done:

- We computed the potentials required for the 4PN multipoles.
- We computed the mass quadrupole in 3d.
- Now completing the computation the UV (dim-reg/Had) difference. What is left to do for the mass quadrupole:
- Compute the IR (dim-reg/Had) difference.
- Reduce the mass quadrupole in the CoM frame for circular orbits. What is left to do for the 4PN flux:
- Compute the other multipoles (much easier).
- Compute non-linear terms.
- Reduce these quantities in the CoM frame for circular orbits.
- Compute the flux.
- Deduce the phase.

[^0]: ${ }^{2}$ For 4PN, 654 terms while "only" 92 for 3PN

[^1]: ${ }^{2}$ For 4PN, 654 terms while "only" 92 for 3PN

