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’cT = 1’ theories and their relation to Horndeski [part of EST:

Crisostomi, Koyama or DHOST : Langloois, Noui]

Shift-symmetric scalar tensor theory cT = 1 minimally coupled to matter :
parametrized by K ,A3,G

L = K(X)+G(X)R +A3(X)φµφµνφν�φ+A4(X)φµφµρφρνφν +A5(X)(φµφµνφν)2 ,

coupling functions depend only on X = gµν∂µφ∂νφ.
K(X) = −Λbare + X + .. and the operators A4,A5 are fixed with respect to A3,G
cT = 1 theories are mapped to Horndeski via,

gµν −→ g̃µν = C(X)gµν + D(X)∇µφ∇νφ

for given functions C and D.
One can start with a cT 6= 1 Horndeski theory (solution) and map it to a cT = 1
theory (solution) for a specific function D.
Example
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Stealth solution of spherical symmetry [Babichev, CC, GEFarèse, Lehébel]

Example Horndeski, G4 = ζ + βX

S =
∫

d4x
√
−g [ζR − 2Λb − ηX + βGµν∂µφ∂νφ] ,

General spherically symmetric solution is known[Babichev, cc],
ds2 = −h(r)dt2 + dr2

f (r) + r2dΩ2, φ = φ(t, r)

One such solution reads f = h = 1− µ
r + η

3β r2, φ = qt ±
∫

dr q
h
√
1− h

with Λeff = −ζη/β and q2 = ζη+Λbβ
βη

.

Go to (cT = 1 theory) via a disformal transformation:

g̃µν = gµν −
β

ζ + β
2 X

φµφν .

The disformed metric is still a black hole, X̃ constant
Solution stable in a Λb-dependent window.
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Going beyond spherical symmetry

How can we implement rotation?
We need to know how a rotating black hole behaves in general- in the ringdown
phase- and further on for black hole binaries.
For numerics we need to have candidate, approximate solutions in order to relax
them to full fledged numerical solutions
The key is understanding what X = −q2 constant means
Now we start with a cT = 1 theory.

C. Charmousis Rotating black hole in higher order theories



Going beyond spherical symmetry

How can we implement rotation?
We need to know how a rotating black hole behaves in general- in the ringdown
phase- and further on for black hole binaries.
For numerics we need to have candidate, approximate solutions in order to relax
them to full fledged numerical solutions
The key is understanding what X = −q2 constant means
Now we start with a cT = 1 theory.

C. Charmousis Rotating black hole in higher order theories



Going beyond spherical symmetry-the role of geodesics
[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, Rµν = Λgµν and X = X0 constant.
When are such metric and scalar solutions to the field equations of a cT = 1 theory?
When :

A3(X0) = 0 (rotation)
Λ = −K/(2G)|X0 , (KX + 4ΛGX )|X0 = 0 (self-tuning conditions)

Any theory with A3 having a zero at some value X = X0 is enough to guarantee
a solution.
What does X = ∇µφ∇µφ constant really mean?
Take Ya = ∂aφ then the derivative of X = YaYbgab = X0 is simply
ab = Y a∇bYa = 0
Acceleration is zero hence φ is related to a geodesic congruence in the given
spacetime.
the scalar field φ is the Hamilton-Jacobi generating function S where
∂S
∂λ

= gµν ∂S
∂xµ

∂S
∂xν
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The example of Carter’s solution (de Sitter-Kerr)

Rotating black hole Einstein metric

ds2 = −
∆r

Ξ2ρ2

[
dt − a sin2θdϕ

]2 + ρ2
(

dr2

∆r
+

dθ2

∆θ

)
+

∆θsin2θ
Ξ2ρ2

[
a dt −

(
r2 + a2

)
dϕ
]2
,

∆r =
(
1−

r2

`2

)(
r2 + a2

)
− 2Mr , Ξ = 1 +

a2

`2
,

∆θ = 1 +
a2

`2
cos2θ , ρ2 = r2 + a2cos2θ ,

Black hole parameters are a,M,Λ = 3/l2 which describe a black hole with an
inner, outer event and cosmological horizon for Λ > 0.
To evaluate the HJ generating function we need to know the inverse metric and
solve a first order differential equation.
Is there such a scalar which is well defined in the black hole spacetime?
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The example of Carter’s solution (de Sitter-Kerr)

The Hamilton Jacobi potential reads [Carter],
S = −E t + Lzϕ+ S(r , θ) ,

since ∂t and ∂φ are Killing vectors and is separable S(r , θ) = Sr (r) + Sθ(θ)!

Sr = ±
∫ √

R
∆r

dr , Sθ = ±
∫ √

Θ
∆θ

dθ ,

R = Ξ2
[
E
(

r2 + a2
)
− a Lz

]2
− ∆r

[
Q+ Ξ2 (a E − Lz )2 + m2r2

]
, (1)

Θ = −Ξ2sin2θ
(

a E −
Lz

sin2θ

)2

+ ∆θ

[
Q+ Ξ2 (a E − Lz )2 −m2a2cos2θ

]
. (2)

Note we have E ,m, Lz ,Q parametrising the Energy at infinity, rest mass, angular
momentum and Carter’s separation constant.
We want to identify φ = S
φ (unlike S) needs to be well defined in all the permitted domain of the
coordinates. For a start we need that Θ and R are positive functions.
Regularity : Lz = 0 and Q+ Ξ2a2E2 = m2a2,
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Rotating black hole Λ = 0

We have,
φ(t, r , θ) = −E t + φr + φθ ,

where,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where we define η = ΞE

m ∈ [ηc , 1]
Take Λ = 0, ie Kerr, we have η = 1
The scalar φ then has no θ dependance. Coincides with known solution if a = 0
(E = m = q).
Solution is regular at the event horizon for one of the branches by going to
advanced EF coordinates.
v = t +

∫
dr r2+a2

∆r
, ϕ̄ = ϕ+ a

∫
dr
∆r

Solution then is Kerr with a non trivial scalar field
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Rotating black hole Λ > 0

Scalar reads,
φ(t, r , θ) = −E t + φr + φθ ,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where η = ΞE

m ∈ [ηc , 1].
ηc is the limiting value of R > 0. ie., it is such that R has a double zero at
rEH < r0 < rCH

we have ηc < 1 and as Λ increases ηc decreases
We have two branches of solutions. Going to EF coords we see that one chart is
regular at the EH while the latter at the CH but none at both.

v = t ±
∫

dr r2+a2
∆r

, ϕ̄ = ϕ± a
∫

dr
∆r
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Rotating black hole Λ > 0
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Regular Rotating black hole with Λ 6= 0

Scalar reads,
φ(t, r , θ) = −E t + φr + φθ ,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where η = ΞE

m ∈ [ηc , 1].
Fixing η = ηc the two branches join with C2 regularity at r = r0.

Then using both branches ie., φr = H[r − r0]
∫ r

r0

√
R

∆r
−H[r0 − r ]

∫ r
r0

√
R

∆r
, we have

a regular scalar field everywhere
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Conclusions

We have obtained a rotating black hole with hair which is everywhere regular.
Unlike GR for Λ < 0 there is no regular rotating solution!
Rotating black hole construction is akin to cT = 1 theories
Spin 2 perturbations yield separable Teukolsky equation with source [CC, Crisostomi,

Langlois, Noui] but scalar kinetic matrix is degenerate ([Babichev, et al], [De Rham, Zhang])
Can obtain any GR vacuum solution with well defined hair in such theories
One can use this stealth solution to construct numerically other non Kerr
solutions by relaxation techniques
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