Rotating black hole in higher order theories

IJCLab UPS, CNRS

Rencontre des groupes de travail "Formes d'onde" et "Tests de la relativité générale et théories alternatives Collaborators : E Babichev, GEFarèse A Lehébel, M Crisostomi, R Gregory, N Stergioulas

$'c_{\mathcal{T}}=1'$ theories and their relation to Horndeski [part of EST:

Crisostomi, Koyama or DHOST : Langloois, Noui]

Shift-symmetric scalar tensor theory $c_T = 1$ minimally coupled to matter : parametrized by K, A_3, G

 $\mathcal{L} = \mathcal{K}(X) + \mathcal{G}(X)R + A_3(X)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}\Box\phi + A_4(X)\phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + A_5(X)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2,$

• coupling functions depend only on $X = g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$.

• $K(X) = -\Lambda_{bare} + X + ..$ and the operators A_4, A_5 are fixed with respect to A_3, G

c_T = 1 theories are mapped to Horndeski via.

 $g_{\mu\nu} \longrightarrow \tilde{g}_{\mu\nu} = C(X)g_{\mu\nu} + D(X)\nabla_{\mu}\phi\nabla_{\nu}\phi$

for given functions C and D.

- One can start with a c_T ≠ 1 Horndeski theory (solution) and map it to a c_T = 1 theory (solution) for a specific function D.
- Example

$'c_{\mathcal{T}}=1'$ theories and their relation to Horndeski [part of EST:

Crisostomi, Koyama or DHOST : Langloois, Noui]

Shift-symmetric scalar tensor theory $c_T = 1$ minimally coupled to matter : parametrized by K, A_3, G

 $\mathcal{L} = \mathcal{K}(X) + \mathcal{G}(X)R + A_3(X)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}\Box\phi + A_4(X)\phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + A_5(X)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2,$

- coupling functions depend only on $X = g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$.
- $K(X) = -\Lambda_{bare} + X + ...$ and the operators A_4, A_5 are fixed with respect to A_3, G

• $c_T = 1$ theories are mapped to Horndeski via,

 $g_{\mu\nu} \longrightarrow \tilde{g}_{\mu\nu} = C(X)g_{\mu\nu} + D(X)\nabla_{\mu}\phi\nabla_{\nu}\phi$

for given functions C and D.

- One can start with a c_T ≠ 1 Horndeski theory (solution) and map it to a c_T = 1 theory (solution) for a specific function D.
- Example

$'c_{\mathcal{T}}=1'$ theories and their relation to Horndeski [part of EST:

Crisostomi, Koyama or DHOST : Langloois, Noui]

Shift-symmetric scalar tensor theory $c_T = 1$ minimally coupled to matter : parametrized by K, A_3, G

 $\mathcal{L} = \mathcal{K}(X) + \mathcal{G}(X)R + A_3(X)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}\Box\phi + A_4(X)\phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + A_5(X)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2,$

- coupling functions depend only on $X = g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$.
- $K(X) = -\Lambda_{bare} + X + ...$ and the operators A_4, A_5 are fixed with respect to A_3, G

c_T = 1 theories are mapped to Horndeski via,

$$g_{\mu\nu} \longrightarrow \tilde{g}_{\mu\nu} = C(X)g_{\mu\nu} + D(X)\nabla_{\mu}\phi\nabla_{\nu}\phi$$

for given functions C and D.

- One can start with a $c_T \neq 1$ Horndeski theory (solution) and map it to a $c_T = 1$ theory (solution) for a specific function *D*.
- Example

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda_b - \eta X + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right],$$

- General spherically symmetric solution is known_[Babichev, cc], $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$, $\phi = \phi(t, r)$
- One such solution reads $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$, $\phi = qt \pm \int dr \frac{q}{h}\sqrt{1-h}$ with $\Lambda_{\text{eff}} = -\zeta \eta/\beta$ and $q^2 = \frac{\zeta \eta + \Lambda_b \beta}{\beta \eta}$.
- Go to $(c_T = 1$ theory) via a disformal transformation:

$$\tilde{g}_{\mu\nu} = g_{\mu\nu} - \frac{\beta}{\zeta + \frac{\beta}{2} X} \phi_{\mu} \phi_{\nu}.$$

- The disformed metric is still a black hole, $ilde{X}$ constant
- Solution stable in a Λ_b -dependent window.

$$S = \int d^4 x \sqrt{-g} \left[\zeta R - 2\Lambda_b - \eta X + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right],$$

- General spherically symmetric solution is known[Babichev, cc], $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2, \ \phi = \phi(t, r)$
- One such solution reads $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$, $\phi = qt \pm \int dr \frac{q}{h}\sqrt{1-h}$ with $\Lambda_{\text{eff}} = -\zeta \eta/\beta$ and $q^2 = \frac{\zeta \eta + \Lambda_b \beta}{\beta \eta}$.
- Go to $(c_T = 1$ theory) via a disformal transformation:

$$\widetilde{g}_{\mu\nu} = g_{\mu\nu} - rac{eta}{\zeta + rac{eta}{2} X} \phi_{\mu} \phi_{
u}.$$

- The disformed metric is still a black hole, $ilde{X}$ constant
- Solution stable in a Λ_b -dependent window.

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda_b - \eta X + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right],$$

- General spherically symmetric solution is known_[Babichev, cc], $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$, $\phi = \phi(t, r)$
- One such solution reads $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$, $\phi = qt \pm \int dr \frac{q}{h}\sqrt{1-h}$ with $\Lambda_{\text{eff}} = -\zeta \eta/\beta$ and $q^2 = \frac{\zeta \eta + \Lambda_b \beta}{\beta \eta}$.
- $X = g^{\mu\nu}\phi_{\mu}\phi_{\nu} = -rac{q^2}{h} + q^2rac{f(1-h)}{h^2} = -q^2$ is constant ([Kobayashi and Tanahashi])
- ${f \circ}$ Change of coordinates shows that ϕ is regular either at the EH or the CH
- Go to $(c_T = 1$ theory) via a disformal transformation:

$$\tilde{g}_{\mu\nu} = g_{\mu\nu} - \frac{\beta}{\zeta + \frac{\beta}{2}X} \phi_{\mu}\phi_{\nu}$$

- The disformed metric is still a black hole, X constant
- Solution stable in a Λ_b -dependent window.

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda_b - \eta X + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right],$$

- General spherically symmetric solution is known_[Babichev, cc], $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$, $\phi = \phi(t, r)$
- One such solution reads $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$, $\phi = qt \pm \int dr \frac{q}{h}\sqrt{1-h}$ with $\Lambda_{\text{eff}} = -\zeta \eta/\beta$ and $q^2 = \frac{\zeta \eta + \Lambda_b \beta}{\beta \eta}$.
- Go to $(c_T = 1$ theory) via a disformal transformation:

$$ilde{g}_{\mu
u} = g_{\mu
u} - rac{eta}{\zeta + rac{eta}{2} X} \phi_{\mu} \phi_{
u}.$$

- The disformed metric is still a black hole, \tilde{X} constant
- Solution stable in a Λ_b -dependent window.

Going beyond spherical symmetry

- How can we implement rotation?
- We need to know how a rotating black hole behaves in general- in the ringdown phase- and further on for black hole binaries.
- For numerics we need to have candidate, approximate solutions in order to relax them to full fledged numerical solutions
- The key is understanding what $X = -q^2$ constant means
- Now we start with a $c_T = 1$ theory.

Going beyond spherical symmetry

- How can we implement rotation?
- We need to know how a rotating black hole behaves in general- in the ringdown phase- and further on for black hole binaries.
- For numerics we need to have candidate, approximate solutions in order to relax them to full fledged numerical solutions
- The key is understanding what $X = -q^2$ constant means
- Now we start with a $c_T = 1$ theory.

[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, $R_{\mu\nu} = \Lambda g_{\mu\nu}$ and $X = X_0$ constant. When are such metric and scalar solutions to the field equations of a $c_T = 1$ theory?

When :

• $A_3(X_0) = 0$ (rotation)

- $\Lambda = -K/(2G)|_{X_0}$, $(K_X + 4\Lambda G_X)|_{X_0} = 0$ (self-tuning conditions)
- Any theory with A_3 having a zero at some value $X = X_0$ is enough to guarantee a solution.
- What does $X = \nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_a = \partial_a \phi$ then the derivative of $X = Y_a Y_b g^{ab} = X_0$ is simply $a^b = Y^a \nabla^b Y_a = 0$
- the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda} = g^{\mu\nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, $R_{\mu\nu} = \Lambda g_{\mu\nu}$ and $X = X_0$ constant. When are such metric and scalar solutions to the field equations of a $c_T = 1$ theory?

When :

- $A_3(X_0) = 0$ (rotation)
- $\Lambda = -K/(2G)|_{X_0}$, $(K_X + 4\Lambda G_X)|_{X_0} = 0$ (self-tuning conditions)
- Any theory with A_3 having a zero at some value $X = X_0$ is enough to guarantee a solution.
- What does $X = \nabla_{\mu}\phi\nabla^{\mu}\phi$ constant really mean?
- Take $Y_a = \partial_a \phi$ then the derivative of $X = Y_a Y_b g^{ab} = X_0$ is simply $a^b = Y^a \nabla^b Y_a = 0$
- $\bullet\,$ Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.
- the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda} = g^{\mu\nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, $R_{\mu\nu} = \Lambda g_{\mu\nu}$ and $X = X_0$ constant. When are such metric and scalar solutions to the field equations of a $c_T = 1$ theory?

When :

- $A_3(X_0) = 0$ (rotation)
- $\Lambda = -K/(2G)|_{X_0}$, $(K_X + 4\Lambda G_X)|_{X_0} = 0$ (self-tuning conditions)
- Any theory with A_3 having a zero at some value $X = X_0$ is enough to guarantee a solution.
- What does $X =
 abla_{\mu} \phi
 abla^{\mu} \phi$ constant really mean?
- Take $Y_a = \partial_a \phi$ then the derivative of $X = Y_a Y_b g^{ab} = X_0$ is simply $a^b = Y^a \nabla^b Y_a = 0$
- $\bullet\,$ Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.
- the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda} = g^{\mu\nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, $R_{\mu\nu} = \Lambda g_{\mu\nu}$ and $X = X_0$ constant. When are such metric and scalar solutions to the field equations of a $c_T = 1$ theory?

When :

- $A_3(X_0) = 0$ (rotation)
- $\Lambda = -K/(2G)|_{X_0}$, $(K_X + 4\Lambda G_X)|_{X_0} = 0$ (self-tuning conditions)
- Any theory with A_3 having a zero at some value $X = X_0$ is enough to guarantee a solution.
- What does $X =
 abla_{\mu} \phi
 abla^{\mu} \phi$ constant really mean?
- Take $Y_a = \partial_a \phi$ then the derivative of $X = Y_a Y_b g^{ab} = X_0$ is simply $a^b = Y^a \nabla^b Y_a = 0$
- $\bullet\,$ Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.

• the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda} = g^{\mu\nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, $R_{\mu\nu} = \Lambda g_{\mu\nu}$ and $X = X_0$ constant. When are such metric and scalar solutions to the field equations of a $c_T = 1$ theory?

When :

- $A_3(X_0) = 0$ (rotation)
- $\Lambda = -K/(2G)|_{X_0}$, $(K_X + 4\Lambda G_X)|_{X_0} = 0$ (self-tuning conditions)
- Any theory with A_3 having a zero at some value $X = X_0$ is enough to guarantee a solution.
- What does $X = \nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_a = \partial_a \phi$ then the derivative of $X = Y_a Y_b g^{ab} = X_0$ is simply $a^b = Y^a \nabla^b Y_a = 0$
- $\bullet\,$ Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.

• the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda} = g^{\mu\nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial F}{\partial x^{\nu}}$

[cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, $R_{\mu\nu} = \Lambda g_{\mu\nu}$ and $X = X_0$ constant. When are such metric and scalar solutions to the field equations of a $c_T = 1$ theory?

When :

- $A_3(X_0) = 0$ (rotation)
- $\Lambda = -K/(2G)|_{X_0}$, $(K_X + 4\Lambda G_X)|_{X_0} = 0$ (self-tuning conditions)
- Any theory with A_3 having a zero at some value $X = X_0$ is enough to guarantee a solution.
- What does $X = \nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_a = \partial_a \phi$ then the derivative of $X = Y_a Y_b g^{ab} = X_0$ is simply $a^b = Y^a \nabla^b Y_a = 0$
- $\bullet\,$ Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.
- the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda} = g^{\mu\nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

Rotating black hole Einstein metric

$$\begin{split} ds^2 &= -\frac{\Delta_r}{\Xi^2 \rho^2} \left[dt - a \sin^2 \theta d\varphi \right]^2 + \rho^2 \left(\frac{dr^2}{\Delta_r} + \frac{d\theta^2}{\Delta_\theta} \right) \\ &+ \frac{\Delta_\theta \sin^2 \theta}{\Xi^2 \rho^2} \left[a \, dt - \left(r^2 + a^2 \right) d\varphi \right]^2 \,, \\ \Delta_r &= \left(1 - \frac{r^2}{\ell^2} \right) \left(r^2 + a^2 \right) - 2Mr \,, \ \, \Xi = 1 + \frac{a^2}{\ell^2} \,, \\ \Delta_\theta &= 1 + \frac{a^2}{\ell^2} \cos^2 \theta \,, \qquad \rho^2 = r^2 + a^2 \cos^2 \theta \,, \end{split}$$

- Black hole parameters are a, M, $\Lambda = 3/l^2$ which describe a black hole with an inner, outer event and cosmological horizon for $\Lambda > 0$.
- To evaluate the HJ generating function we need to know the inverse metric and solve a first order differential equation.
- Is there such a scalar which is well defined in the black hole spacetime?

• The Hamilton Jacobi potential reads [Carter],

 $\mathcal{S} = -E t + L_z \varphi + S(r, \theta),$

since ∂_t and ∂_{ϕ} are Killing vectors and is separable $S(r, \theta) = S_r(r) + S_{\theta}(\theta)!$

$$S_r = \pm \int rac{\sqrt{R}}{\Delta_r} dr \,, \qquad S_ heta = \pm \int rac{\sqrt{\Theta}}{\Delta_ heta} d heta \,,$$

$$R = \Xi^{2} \left[E \left(r^{2} + a^{2} \right) - a L_{z} \right]^{2}$$

- $\Delta_{r} \left[Q + \Xi^{2} \left(a E - L_{z} \right)^{2} + m^{2} r^{2} \right], \qquad (1)$
$$\Theta = -\Xi^{2} \sin^{2} \theta \left(a E - \frac{L_{z}}{\sin^{2} \theta} \right)^{2}$$

+ $\Delta_{\theta} \left[Q + \Xi^{2} \left(a E - L_{z} \right)^{2} - m^{2} a^{2} \cos^{2} \theta \right]. \qquad (2)$

- Note we have E, m, L_z, Q parametrising the Energy at infinity, rest mass, angular momentum and Carter's separation constant.
- We want to identify $\phi = S$
- ϕ (unlike S) needs to be well defined in all the permitted domain of the coordinates. For a start we need that Θ and R are positive functions.
- Regularity : $L_z = 0$ and $Q + \Xi^2 a^2 E^2 = m^2 a^2$,

• The Hamilton Jacobi potential reads [Carter],

$$\mathcal{S} = -E t + L_z \varphi + S(r,\theta),$$

since ∂_t and ∂_{ϕ} are Killing vectors and is separable $S(r, \theta) = S_r(r) + S_{\theta}(\theta)!$

$$S_{r} = \pm \int \frac{\sqrt{R}}{\Delta_{r}} dr, \qquad S_{\theta} = \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d\theta,$$

$$R = \Xi^{2} \left[E \left(r^{2} + a^{2} \right) - a L_{z} \right]^{2}$$

$$- \Delta_{r} \left[Q + \Xi^{2} \left(a E - L_{z} \right)^{2} + m^{2} r^{2} \right], \qquad (1)$$

$$\Theta = -\Xi^{2} \sin^{2} \theta \left(a E - \frac{L_{z}}{\sin^{2} \theta} \right)^{2}$$

$$+ \Delta_{\theta} \left[Q + \Xi^{2} \left(a E - L_{z} \right)^{2} - m^{2} a^{2} \cos^{2} \theta \right]. \qquad (2)$$

- Note we have E, m, L_z, Q parametrising the Energy at infinity, rest mass, angular momentum and Carter's separation constant.
- We want to identify $\phi = S$
- ϕ (unlike S) needs to be well defined in all the permitted domain of the coordinates. For a start we need that Θ and R are positive functions.
- Regularity : $L_z = 0$ and $Q + \Xi^2 a^2 E^2 = m^2 a^2$,

• The Hamilton Jacobi potential reads [Carter],

$$\mathcal{S} = -E t + L_z \varphi + S(r,\theta),$$

since ∂_t and ∂_{ϕ} are Killing vectors and is separable $S(r, \theta) = S_r(r) + S_{\theta}(\theta)!$

$$S_{r} = \pm \int \frac{\sqrt{R}}{\Delta_{r}} dr, \qquad S_{\theta} = \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d\theta,$$

$$R = \Xi^{2} \left[E \left(r^{2} + a^{2} \right) - a L_{z} \right]^{2}$$

$$- \Delta_{r} \left[Q + \Xi^{2} \left(a E - L_{z} \right)^{2} + m^{2} r^{2} \right], \qquad (1)$$

$$\Theta = -\Xi^{2} \sin^{2} \theta \left(a E - \frac{L_{z}}{\sin^{2} \theta} \right)^{2}$$

$$+ \Delta_{\theta} \left[Q + \Xi^{2} \left(a E - L_{z} \right)^{2} - m^{2} a^{2} \cos^{2} \theta \right]. \qquad (2)$$

- Note we have E, m, L_z, Q parametrising the Energy at infinity, rest mass, angular momentum and Carter's separation constant.
- We want to identify $\phi = S$
- φ (unlike S) needs to be well defined in all the permitted domain of the coordinates. For a start we need that Θ and R are positive functions.
- Regularity : $L_z = 0$ and $Q + \Xi^2 a^2 E^2 = m^2 a^2$,

Rotating black hole $\Lambda = 0$

• We have,

$$\phi(t,r,\theta) = -E t + \phi_r + \phi_\theta ,$$

where,

where

$$\phi_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr, \qquad \phi_{ heta} = \pm \int \frac{\sqrt{\Theta}}{\Delta_{ heta}} d heta,$$

 $\Theta = a^2 m^2 \sin^2 heta \left(\Delta_{ heta} - \eta^2
ight), R = m^2 (r^2 + a^2) \left(\eta^2 (r^2 + a^2) - \Delta_r
ight)$
we define $\eta = \frac{\Xi E}{m} \in [\eta_c, 1]$

- Take $\Lambda = 0$, ie Kerr, we have $\eta = 1$
- The scalar ϕ then has no θ dependance. Coincides with known solution if a = 0 (E = m = q).
- Solution is regular at the event horizon for one of the branches by going to advanced EF coordinates.

•
$$v = t + \int dr \frac{r^2 + a^2}{\Delta_r}, \qquad \bar{\varphi} = \varphi + a \int \frac{dr}{\Delta_r}$$

Solution then is Kerr with a non trivial scalar field

Rotating black hole $\Lambda = 0$

• We have,

$$\phi(t,r,\theta) = -E t + \phi_r + \phi_\theta ,$$

where,

$$\phi_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr, \qquad \phi_{\theta} = \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d\theta,$$
 $\Theta = a^2 m^2 \sin^2 \theta \left(\Delta_{\theta} - \eta^2 \right), R = m^2 (r^2 + a^2) \left(\eta^2 (r^2 + a^2) - \Delta_r \right)$
where we define $\eta = \frac{\Xi E}{m} \in [\eta_c, 1]$

- Take $\Lambda = 0$, ie Kerr, we have $\eta = 1$
- The scalar ϕ then has no θ dependance. Coincides with known solution if a = 0 (E = m = q).
- Solution is regular at the event horizon for one of the branches by going to advanced EF coordinates.

•
$$v = t + \int dr \frac{r^2 + a^2}{\Delta_r}, \qquad \bar{\varphi} = \varphi + a \int \frac{dr}{\Delta_r}$$

• Solution then is Kerr with a non trivial scalar field

Rotating black hole $\Lambda = 0$

We have,

$$\phi(t,r,\theta) = -E t + \phi_r + \phi_\theta ,$$

where,

$$\phi_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr, \qquad \phi_\theta = \pm \int \frac{\sqrt{\Theta}}{\Delta_\theta} d\theta,$$
$$\Theta = 0, R = m^2 (r^2 + a^2) 2Mr$$

where we define $\eta = \frac{\Xi E}{m} \in [\eta_c, 1]$

- Take $\Lambda = 0$, ie Kerr, we have $\eta = 1$
- The scalar ϕ then has no θ dependance. Coincides with known solution if a = 0 (E = m = q).
- Solution is regular at the event horizon for one of the branches by going to advanced EF coordinates.
- $\mathbf{v} = \mathbf{t} + \int d\mathbf{r} \; \frac{\mathbf{r}^2 + \mathbf{a}^2}{\Delta_r}, \qquad \bar{\varphi} = \varphi + \mathbf{a} \int \frac{d\mathbf{r}}{\Delta_r}$
- Solution then is Kerr with a non trivial scalar field

Rotating black hole $\Lambda > 0$

Scalar reads,

$$\begin{split} \phi(t,r,\theta) &= -E \ t + \phi_r + \phi_\theta \ ,\\ \phi_r &= \pm \int \frac{\sqrt{R}}{\Delta_r} dr \ , \qquad \phi_\theta = \pm \int \frac{\sqrt{\Theta}}{\Delta_\theta} d\theta \ ,\\ \Theta &= a^2 m^2 \text{sin}^2 \theta \left(\Delta_\theta - \eta^2 \right) \ , R = m^2 (r^2 + a^2) \left(\eta^2 (r^2 + a^2) - \Delta_r \right) \\ \text{where} \ \eta &= \frac{\Xi E}{m} \in [\eta_c, 1]. \end{split}$$

- η_c is the limiting value of R > 0. ie., it is such that R has a double zero at $r_{EH} < r_0 < r_{CH}$
- we have $\eta_c < 1$ and as Λ increases η_c decreases
- We have two branches of solutions. Going to EF coords we see that one chart is regular at the EH while the latter at the CH but none at both.

Rotating black hole $\Lambda > 0$

Scalar reads,

$$\begin{split} \phi(t,r,\theta) &= -E \ t + \phi_r + \phi_\theta \ ,\\ \phi_r &= \pm \int \frac{\sqrt{R}}{\Delta_r} dr \ , \qquad \phi_\theta = \pm \int \frac{\sqrt{\Theta}}{\Delta_\theta} d\theta \ ,\\ \Theta &= a^2 m^2 \text{sin}^2 \theta \left(\Delta_\theta - \eta^2 \right) \ , R = m^2 (r^2 + a^2) \left(\eta^2 (r^2 + a^2) - \Delta_r \right) \\ \text{where} \ \eta &= \frac{\Xi E}{m} \in [\eta_c, 1]. \end{split}$$

- η_c is the limiting value of R > 0. ie., it is such that R has a double zero at $r_{EH} < r_0 < r_{CH}$
- we have $\eta_c < 1$ and as Λ increases η_c decreases
- We have two branches of solutions. Going to EF coords we see that one chart is regular at the EH while the latter at the CH but none at both.

Regular Rotating black hole with $\Lambda \neq 0$

Scalar reads,

w

$$\begin{split} \phi(t,r,\theta) &= -E t + \phi_r + \phi_\theta \,, \\ \phi_r &= \pm \int \frac{\sqrt{R}}{\Delta_r} dr \,, \qquad \phi_\theta = \pm \int \frac{\sqrt{\Theta}}{\Delta_\theta} d\theta \,, \\ \Theta &= a^2 m^2 \text{sin}^2 \theta \left(\Delta_\theta - \eta^2 \right) \,, R = m^2 (r^2 + a^2) \left(\eta^2 (r^2 + a^2) - \Delta_r \right) \\ \text{here } \eta &= \frac{\Xi E}{m} \in [\eta_c, 1]. \end{split}$$

- Fixing $\eta = \eta_c$ the two branches join with C_2 regularity at $r = r_0$.
- Then using both branches ie., $\phi_r = H[r r_0] \int_{r_0}^r \frac{\sqrt{R}}{\Delta_r} H[r_0 r] \int_{r_0}^r \frac{\sqrt{R}}{\Delta_r}$, we have a regular scalar field everywhere

Conclusions

- We have obtained a rotating black hole with hair which is everywhere regular.
- Unlike GR for $\Lambda < 0$ there is no regular rotating solution!
- Rotating black hole construction is akin to $c_T = 1$ theories
- Spin 2 perturbations yield separable Teukolsky equation with source [CC, Crisostomi, Langlois, Noui] but scalar kinetic matrix is degenerate ([Babichev, et al], [De Rham, Zhang])
- Can obtain any GR vacuum solution with well defined hair in such theories
- One can use this stealth solution to construct numerically other non Kerr solutions by relaxation techniques