Rotating black hole in higher order theories

IJCLab UPS, CNRS

> Rencontre des groupes de travail "Formes d'onde" et "Tests de la relativité générale et théories alternatives
> Collaborators: E Babichev, GEFarèse A Lehébel, M Crisostomi, R Gregory, N Stergioulas

' $c_{T}=1$ ' theories and their relation to Horndeski part of ssr:

Shift-symmetric scalar tensor theory $c_{T}=1$ minimally coupled to matter :
parametrized by K, A_{3}, G

$$
\mathcal{L}=K(X)+G(X) R+A_{3}(X) \phi^{\mu} \phi_{\mu \nu} \phi^{\nu} \square \phi+A_{4}(X) \phi^{\mu} \phi_{\mu \rho} \phi^{\rho \nu} \phi_{\nu}+A_{5}(X)\left(\phi^{\mu} \phi_{\mu \nu} \phi^{\nu}\right)^{2},
$$

- coupling functions depend only on $X=g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$.
- $K(X)=-\Lambda_{\text {bare }}+X+\ldots$ and the operators A_{4}, A_{5} are fixed with respect to A_{3}, G
- $C_{T}=1$ theories are mapped to Horndeski via,
for given functions C and D.
- One can start with a ct $\neq 1$ Horndeski theory (solution) and map it to a cp theory (solution) for a specific function D.

' $c_{T}=1$ ' theories and their relation to Horndeski

Shift-symmetric scalar tensor theory $c_{T}=1$ minimally coupled to matter :
parametrized by K, A_{3}, G

$$
\mathcal{L}=K(X)+G(X) R+A_{3}(X) \phi^{\mu} \phi_{\mu \nu} \phi^{\nu} \square \phi+A_{4}(X) \phi^{\mu} \phi_{\mu \rho} \phi^{\rho \nu} \phi_{\nu}+A_{5}(X)\left(\phi^{\mu} \phi_{\mu \nu} \phi^{\nu}\right)^{2},
$$

- coupling functions depend only on $X=g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$.
- $K(X)=-\Lambda_{\text {bare }}+X+.$. and the operators A_{4}, A_{5} are fixed with respect to A_{3}, G
- $c_{T}=1$ theories are mapped to Horndeski via,

for given functions C and D.
- One can start with a $C_{T} \neq 1$ Horndeski theory (solution) and map it to a $C_{T}=1$ theory (solution) for a specific function D.
- Example

' $c_{T}=1$ ' theories and their relation to Horndeski

Shift-symmetric scalar tensor theory $c_{T}=1$ minimally coupled to matter :
parametrized by K, A_{3}, G
$\mathcal{L}=K(X)+G(X) R+A_{3}(X) \phi^{\mu} \phi_{\mu \nu} \phi^{\nu} \square \phi+A_{4}(X) \phi^{\mu} \phi_{\mu \rho} \phi^{\rho \nu} \phi_{\nu}+A_{5}(X)\left(\phi^{\mu} \phi_{\mu \nu} \phi^{\nu}\right)^{2}$,

- coupling functions depend only on $X=g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$.
- $K(X)=-\Lambda_{\text {bare }}+X+.$. and the operators A_{4}, A_{5} are fixed with respect to A_{3}, G
- $c_{T}=1$ theories are mapped to Horndeski via,

$$
g_{\mu \nu} \longrightarrow \tilde{g}_{\mu \nu}=C(X) g_{\mu \nu}+D(X) \nabla_{\mu} \phi \nabla_{\nu} \phi
$$

for given functions C and D.

- One can start with a $c_{T} \neq 1$ Horndeski theory (solution) and map it to a $c_{T}=1$ theory (solution) for a specific function D.
- Example

Stealth solution of spherical symmetry [masem, ce, emsrase, hamen)

- Example Horndeski, $G_{4}=\zeta+\beta X$

$$
S=\int d^{4} x \sqrt{-g}\left[\zeta R-2 \Lambda_{b}-\eta X+\beta G^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]
$$

- General spherically symmetric solution is known[Babichev, cc], $d s^{2}=-h(r) d t^{2}+\frac{d r^{2}}{f(t)}+r^{2} d \Omega^{2}, \phi=\phi(t, r)$

Stealth solution of spherical symmetry

- Example Horndeski, $G_{4}=\zeta+\beta X$

$$
S=\int d^{4} x \sqrt{-g}\left[\zeta R-2 \Lambda_{b}-\eta X+\beta G^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]
$$

- General spherically symmetric solution is known[Babichev, cc],

$$
d s^{2}=-h(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega^{2}, \phi=\phi(t, r)
$$

- One such solution reads $f=h=1-\frac{\mu}{r}+\frac{\eta}{3 \beta} r^{2}, \phi=q t \pm \int d r \frac{q}{h} \sqrt{1-h}$ with $\Lambda_{\mathrm{eff}}=-\zeta \eta / \beta$ and $q^{2}=\frac{\zeta \eta+\Lambda_{b} \beta}{\beta \eta}$. - Go to ($c_{T}=1$ theory) via a disformal trensformation
- The disformed metric is still a black hole, \tilde{X} constant
- Solution stable in a $\Lambda_{\text {t-denendent }}$ window

Stealth solution of spherical symmetry

- Example Horndeski, $G_{4}=\zeta+\beta X$

$$
S=\int d^{4} x \sqrt{-g}\left[\zeta R-2 \Lambda_{b}-\eta X+\beta G^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]
$$

- General spherically symmetric solution is known[Babichev, cc],

$$
d s^{2}=-h(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega^{2}, \phi=\phi(t, r)
$$

- One such solution reads $f=h=1-\frac{\mu}{r}+\frac{\eta}{3 \beta} r^{2}, \phi=q t \pm \int d r \frac{q}{h} \sqrt{1-h}$ with $\Lambda_{\text {eff }}=-\zeta \eta / \beta$ and $q^{2}=\frac{\zeta \eta+\Lambda_{b} \beta}{\beta \eta}$.
- $X=g^{\mu \nu} \phi_{\mu} \phi_{\nu}=-\frac{q^{2}}{h}+q^{2} \frac{f(1-h)}{h^{2}}=-q^{2}$ is constant ([Kobayashi and Tanahashi])
- Change of coordinates shows that ϕ is regular either at the EH or the CH
- Go to ($c_{T}=1$ theory) via a disformal transformation:

- The disformed metric is still a black hole, \tilde{X} constant
- Solution stable in a $\Lambda_{\text {b }}$-dependent window.

Stealth solution of spherical symmetry

- Example Horndeski, $G_{4}=\zeta+\beta X$

$$
S=\int d^{4} x \sqrt{-g}\left[\zeta R-2 \Lambda_{b}-\eta X+\beta G^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]
$$

- General spherically symmetric solution is known[Babichev, cc],

$$
d s^{2}=-h(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega^{2}, \phi=\phi(t, r)
$$

- One such solution reads $f=h=1-\frac{\mu}{r}+\frac{\eta}{3 \beta} r^{2}, \phi=q t \pm \int d r \frac{q}{h} \sqrt{1-h}$ with $\Lambda_{\text {eff }}=-\zeta \eta / \beta$ and $q^{2}=\frac{\zeta \eta+\Lambda_{b} \beta}{\beta \eta}$.
- Go to ($c_{T}=1$ theory) via a disformal transformation:

$$
\tilde{g}_{\mu \nu}=g_{\mu \nu}-\frac{\beta}{\zeta+\frac{\beta}{2} X} \phi_{\mu} \phi_{\nu} .
$$

- The disformed metric is still a black hole, \tilde{X} constant
- Solution stable in a Λ_{b}-dependent window.

Going beyond spherical symmetry

- How can we implement rotation?
- We need to know how a rotating black hole behaves in general- in the ringdown phase- and further on for black hole binaries.
- For numerics we need to have candidate, approximate solutions in order to relax them to full fledged numerical solutions
- Now we start with a $c_{T}=1$ theory.

Going beyond spherical symmetry

- How can we implement rotation?
- We need to know how a rotating black hole behaves in general- in the ringdown phase- and further on for black hole binaries.
- For numerics we need to have candidate, approximate solutions in order to relax them to full fledged numerical solutions
- The key is understanding what $X=-q^{2}$ constant means
- Now we start with a $c_{T}=1$ theory.

Going beyond spherical symmetry-the role of geodesics

```
[cc, Crisostomi, Gregory, Stergioulas]
```

Consider an Einstein metric, $R_{\mu \nu}=\Lambda g_{\mu \nu}$ and $X=X_{0}$ constant.
When are such metric and scalar solutions to the field equations of a $c_{T}=1$ theory?
When :

- $A_{3}\left(X_{0}\right)=0$ (rotation)
- $\Lambda=-K /\left.(2 G)\right|_{x_{0}},\left.\left(K_{X}+4 \Lambda G_{X}\right)\right|_{x_{0}}=0$ (self-tuning conditions)

[^0]
Going beyond spherical symmetry-the role of geodesics

```
[cc, Crisostomi, Gregory, Stergioulas]
```


Consider an Einstein metric, $R_{\mu \nu}=\Lambda g_{\mu \nu}$ and $X=X_{0}$ constant.

When are such metric and scalar solutions to the field equations of a $c_{T}=1$ theory?
When :

- $A_{3}\left(X_{0}\right)=0$ (rotation)
- $\Lambda=-K /(2 G)\left|x_{0},\left(K_{X}+4 \wedge G_{X}\right)\right| x_{0}=0$ (self-tuning conditions)
- Any theory with A_{3} having a zero at some value $X=X_{0}$ is enough to guarantee a solution.
- What does $X=\nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_{a}=\partial_{a} \phi$ then the derivative of X

Going beyond spherical symmetry-the role of geodesics

```
[cc, Crisostomi, Gregory, Stergioulas]
```


Consider an Einstein metric, $R_{\mu \nu}=\Lambda g_{\mu \nu}$ and $X=X_{0}$ constant.

When are such metric and scalar solutions to the field equations of a $c_{T}=1$ theory?
When :

- $A_{3}\left(X_{0}\right)=0$ (rotation)
- $\Lambda=-K /(2 G)\left|x_{0},\left(K_{X}+4 \wedge G_{X}\right)\right| x_{0}=0$ (self-tuning conditions)
- Any theory with A_{3} having a zero at some value $X=X_{0}$ is enough to guarantee a solution.
- What does $X=\nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_{a}=\partial_{a} \phi$ then the derivative of $X=Y_{a} Y_{b} g^{a b}=X_{0}$ is simply $a^{b}=Y^{a} \nabla^{b} Y_{a}=0$
- Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.

Going beyond spherical symmetry-the role of geodesics

```
[cc, Crisostomi, Gregory, Stergioulas]
```

Consider an Einstein metric, $R_{\mu \nu}=\Lambda g_{\mu \nu}$ and $X=X_{0}$ constant.
When are such metric and scalar solutions to the field equations of a $c_{T}=1$ theory?
When :

- $A_{3}\left(X_{0}\right)=0$ (rotation)
- $\Lambda=-K /\left.(2 G)\right|_{x_{0}},\left.\left(K_{X}+4 \Lambda G_{X}\right)\right|_{x_{0}}=0$ (self-tuning conditions)
- Any theory with A_{3} having a zero at some value $X=X_{0}$ is enough to guarantee a solution.
- What does $X=\nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_{a}=\partial_{a} \phi$ then the derivative of $X=Y_{a} Y_{b} g^{a b}=X_{0}$ is simply $a^{b}=Y^{a} \nabla^{b} Y_{a}=0$
- Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.
- the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda}=g^{\mu \nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

Going beyond spherical symmetry-the role of geodesics

```
[cc, Crisostomi, Gregory, Stergioulas]
```

Consider an Einstein metric, $R_{\mu \nu}=\Lambda g_{\mu \nu}$ and $X=X_{0}$ constant.
When are such metric and scalar solutions to the field equations of a $c_{T}=1$ theory?
When :

- $A_{3}\left(X_{0}\right)=0$ (rotation)
- $\Lambda=-K /\left.(2 G)\right|_{X_{0}},\left.\left(K_{X}+4 \wedge G_{X}\right)\right|_{X_{0}}=0$ (self-tuning conditions)
- Any theory with A_{3} having a zero at some value $X=X_{0}$ is enough to guarantee a solution.
- What does $X=\nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_{a}=\partial_{a} \phi$ then the derivative of $X=Y_{a} Y_{b} g^{a b}=X_{0}$ is simply $a^{b}=Y^{a} \nabla^{b} Y_{a}=0$
- Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.
- the scalar field ϕ is the Hamilton-Jacobi generating function S where
$\frac{\partial S}{\partial \lambda}=g^{\mu \nu} \frac{\partial S}{\partial S} \frac{\partial S}{0 \nu}$ $\frac{\partial S}{\partial \lambda}=g^{\mu \nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

Going beyond spherical symmetry-the role of geodesics

```
[cc, Crisostomi, Gregory, Stergioulas]
```

Consider an Einstein metric, $R_{\mu \nu}=\Lambda g_{\mu \nu}$ and $X=X_{0}$ constant.
When are such metric and scalar solutions to the field equations of a $c_{T}=1$ theory?
When :

- $A_{3}\left(X_{0}\right)=0$ (rotation)
- $\Lambda=-K /\left.(2 G)\right|_{X_{0}},\left.\left(K_{X}+4 \wedge G_{X}\right)\right|_{X_{0}}=0$ (self-tuning conditions)
- Any theory with A_{3} having a zero at some value $X=X_{0}$ is enough to guarantee a solution.
- What does $X=\nabla_{\mu} \phi \nabla^{\mu} \phi$ constant really mean?
- Take $Y_{a}=\partial_{a} \phi$ then the derivative of $X=Y_{a} Y_{b} g^{a b}=X_{0}$ is simply $a^{b}=Y^{a} \nabla^{b} Y_{a}=0$
- Acceleration is zero hence ϕ is related to a geodesic congruence in the given spacetime.
- the scalar field ϕ is the Hamilton-Jacobi generating function S where $\frac{\partial S}{\partial \lambda}=g^{\mu \nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}$

The example of Carter's solution (de Sitter-Kerr)

- Rotating black hole Einstein metric

$$
\begin{aligned}
d s^{2} & =-\frac{\Delta_{r}}{\Xi^{2} \rho^{2}}\left[d t-a \sin ^{2} \theta d \varphi\right]^{2}+\rho^{2}\left(\frac{d r^{2}}{\Delta_{r}}+\frac{d \theta^{2}}{\Delta_{\theta}}\right) \\
& +\frac{\Delta_{\theta} \sin ^{2} \theta}{\Xi^{2} \rho^{2}}\left[a d t-\left(r^{2}+a^{2}\right) d \varphi\right]^{2} \\
\Delta_{r} & =\left(1-\frac{r^{2}}{\ell^{2}}\right)\left(r^{2}+a^{2}\right)-2 M r, \quad \equiv=1+\frac{a^{2}}{\ell^{2}} \\
\Delta_{\theta} & =1+\frac{a^{2}}{\ell^{2}} \cos ^{2} \theta, \quad \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

- Black hole parameters are a, $M, \Lambda=3 / l^{2}$ which describe a black hole with an inner, outer event and cosmological horizon for $\Lambda>0$.
- To evaluate the HJ generating function we need to know the inverse metric and solve a first order differential equation.
- Is there such a scalar which is well defined in the black hole spacetime?

The example of Carter's solution (de Sitter-Kerr)

- The Hamilton Jacobi potential reads [carter],

$$
\mathcal{S}=-E t+L_{z} \varphi+S(r, \theta),
$$

since ∂_{t} and ∂_{ϕ} are Killing vectors and is separable $S(r, \theta)=S_{r}(r)+S_{\theta}(\theta)!$

- Note we have E, m, L_{z}, \mathcal{Q} parametrising the Energy at infinity, rest mass, angular momentum and Carter's separation constant.
- We want to identify $\phi=\mathcal{S}$
- ϕ (unlike \mathcal{S}) needs to be well defined in all the permitted domain of the
coordinates. For a start we need that Θ and R are positive functions.

The example of Carter's solution (de Sitter-Kerr)

- The Hamilton Jacobi potential reads [carter],

$$
\mathcal{S}=-E t+L_{z} \varphi+S(r, \theta),
$$

since ∂_{t} and ∂_{ϕ} are Killing vectors and is separable $S(r, \theta)=S_{r}(r)+S_{\theta}(\theta)$!

$$
\begin{align*}
S_{r} & = \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad S_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
R & =\bar{\Xi}^{2}\left[E\left(r^{2}+a^{2}\right)-a L_{z}\right]^{2} \\
& -\Delta_{r}\left[\mathcal{Q}+\bar{\Xi}^{2}\left(a E-L_{z}\right)^{2}+m^{2} r^{2}\right] \tag{1}\\
\Theta & =-\bar{\Xi}^{2} \sin ^{2} \theta\left(a E-\frac{L_{z}}{\sin ^{2} \theta}\right)^{2} \\
& +\Delta_{\theta}\left[\mathcal{Q}+\bar{\Xi}^{2}\left(a E-L_{z}\right)^{2}-m^{2} a^{2} \cos ^{2} \theta\right] \tag{2}
\end{align*}
$$

- Note we have E, m, L_{z}, \mathcal{Q} parametrising the Energy at infinity, rest mass, angular momentum and Carter's separation constant.
- We want to identify $\phi=\mathcal{S}$
- ϕ (unlike \mathcal{S}) needs to be well defined in all the permitted domain of the coordinates. For a start we need that Θ and R are positive functions.
- Regularity
- The Hamilton Jacobi potential reads [carter],

$$
\mathcal{S}=-E t+L_{z} \varphi+S(r, \theta),
$$

since ∂_{t} and ∂_{ϕ} are Killing vectors and is separable $S(r, \theta)=S_{r}(r)+S_{\theta}(\theta)$!

$$
\begin{align*}
S_{r} & = \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad S_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
R & =\bar{\Xi}^{2}\left[E\left(r^{2}+a^{2}\right)-a L_{z}\right]^{2} \\
& -\Delta_{r}\left[\mathcal{Q}+\bar{\Xi}^{2}\left(a E-L_{z}\right)^{2}+m^{2} r^{2}\right] \tag{1}\\
\Theta & =-\bar{\Xi}^{2} \sin ^{2} \theta\left(a E-\frac{L_{z}}{\sin ^{2} \theta}\right)^{2} \\
& +\Delta_{\theta}\left[\mathcal{Q}+\bar{\Xi}^{2}\left(a E-L_{z}\right)^{2}-m^{2} a^{2} \cos ^{2} \theta\right] \tag{2}
\end{align*}
$$

- Note we have E, m, L_{z}, \mathcal{Q} parametrising the Energy at infinity, rest mass, angular momentum and Carter's separation constant.
- We want to identify $\phi=\mathcal{S}$
- ϕ (unlike \mathcal{S}) needs to be well defined in all the permitted domain of the coordinates. For a start we need that Θ and R are positive functions.
- Regularity: $L_{z}=0$ and $\mathcal{Q}+\bar{\Xi}^{2} a^{2} E^{2}=m^{2} a^{2}$,

Rotating black hole $\Lambda=0$

- We have,

$$
\phi(t, r, \theta)=-E t+\phi_{r}+\phi_{\theta},
$$

where,

$$
\begin{gathered}
\phi_{r}= \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad \phi_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
\Theta=a^{2} m^{2} \sin ^{2} \theta\left(\Delta_{\theta}-\eta^{2}\right), R=m^{2}\left(r^{2}+a^{2}\right)\left(\eta^{2}\left(r^{2}+a^{2}\right)-\Delta_{r}\right)
\end{gathered}
$$

where we define $\eta=\frac{\equiv E}{m} \in\left[\eta_{c}, 1\right]$

- Solution is regular at the event horizon for one of the branches by going to advanced EF coordinates.

Rotating black hole $\Lambda=0$

- We have,

$$
\phi(t, r, \theta)=-E t+\phi_{r}+\phi_{\theta},
$$

where,

$$
\begin{gathered}
\phi_{r}= \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad \phi_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
\Theta=a^{2} m^{2} \sin ^{2} \theta\left(\Delta_{\theta}-\eta^{2}\right), R=m^{2}\left(r^{2}+a^{2}\right)\left(\eta^{2}\left(r^{2}+a^{2}\right)-\Delta_{r}\right)
\end{gathered}
$$

where we define $\eta=\frac{\equiv E}{m} \in\left[\eta_{c}, 1\right]$

- Take $\Lambda=0$, ie Kerr, we have $\eta=1$
- The scalar ϕ then has no θ dependance. Coincides with known solution if $a=0$ ($E=m=q$).
- Solution is regular at the event horizon for one of the branches by going to advanced EF coordinates.
- $v=t+\int d r \frac{r^{2}+a^{2}}{\Delta_{r}}, \quad \bar{\varphi}=\varphi+a \int \frac{d r}{\Delta_{r}}$
- Solution then is Kerr with a non trivial scalar field

Rotating black hole $\Lambda=0$

- We have,

$$
\phi(t, r, \theta)=-E t+\phi_{r}+\phi_{\theta},
$$

where,

$$
\begin{gathered}
\phi_{r}= \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad \phi_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta, \\
\Theta=0, R=m^{2}\left(r^{2}+a^{2}\right) 2 M r
\end{gathered}
$$

where we define $\eta=\frac{\equiv E}{m} \in\left[\eta_{c}, 1\right]$

- Take $\Lambda=0$, ie Kerr, we have $\eta=1$
- The scalar ϕ then has no θ dependance. Coincides with known solution if $a=0$ ($E=m=q$).
- Solution is regular at the event horizon for one of the branches by going to advanced EF coordinates.
- $v=t+\int d r \frac{r^{2}+a^{2}}{\Delta_{r}}, \quad \bar{\varphi}=\varphi+a \int \frac{d r}{\Delta_{r}}$
- Solution then is Kerr with a non trivial scalar field

Rotating black hole $\Lambda>0$

- Scalar reads,

$$
\begin{gathered}
\phi(t, r, \theta)=-E t+\phi_{r}+\phi_{\theta} \\
\phi_{r}= \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad \phi_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
\Theta=a^{2} m^{2} \sin ^{2} \theta\left(\Delta_{\theta}-\eta^{2}\right), R=m^{2}\left(r^{2}+a^{2}\right)\left(\eta^{2}\left(r^{2}+a^{2}\right)-\Delta_{r}\right)
\end{gathered}
$$

where $\eta=\frac{\equiv E}{m} \in\left[\eta_{c}, 1\right]$.

- η_{c} is the limiting value of $R>0$. ie., it is such that R has a double zero at $r_{\text {EH }}<r_{0}<r_{C H}$
- we have $\eta_{c}<1$ and as Λ increases η_{c} decreases
- We have two branches of solutions. Going to EF coords we see that one chart is regular at the EH while the latter at the CH but none at both.
- $v=t \pm \int d r \frac{r^{2}+a^{2}}{\Delta_{r}}, \quad \bar{\varphi}=\varphi \pm a \int \frac{d r}{\Delta_{r}}$

Rotating black hole $\Lambda>0$

- Scalar reads,

$$
\begin{gathered}
\phi(t, r, \theta)=-E t+\phi_{r}+\phi_{\theta} \\
\phi_{r}= \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad \phi_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
\Theta=a^{2} m^{2} \sin ^{2} \theta\left(\Delta_{\theta}-\eta^{2}\right), R=m^{2}\left(r^{2}+a^{2}\right)\left(\eta^{2}\left(r^{2}+a^{2}\right)-\Delta_{r}\right)
\end{gathered}
$$

where $\eta=\frac{\equiv E}{m} \in\left[\eta_{c}, 1\right]$.

- η_{c} is the limiting value of $R>0$. ie., it is such that R has a double zero at $r_{\text {EH }}<r_{0}<r_{C H}$
- we have $\eta_{c}<1$ and as Λ increases η_{c} decreases
- We have two branches of solutions. Going to EF coords we see that one chart is regular at the EH while the latter at the CH but none at both.
- $v=t \pm \int d r \frac{r^{2}+a^{2}}{\Delta_{r}}, \quad \bar{\varphi}=\varphi \pm a \int \frac{d r}{\Delta_{r}}$

Regular Rotating black hole with $\wedge \neq 0$

- Scalar reads,

$$
\begin{gathered}
\phi(t, r, \theta)=-E t+\phi_{r}+\phi_{\theta} \\
\phi_{r}= \pm \int \frac{\sqrt{R}}{\Delta_{r}} d r, \quad \phi_{\theta}= \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d \theta \\
\Theta=a^{2} m^{2} \sin ^{2} \theta\left(\Delta_{\theta}-\eta^{2}\right), R=m^{2}\left(r^{2}+a^{2}\right)\left(\eta^{2}\left(r^{2}+a^{2}\right)-\Delta_{r}\right)
\end{gathered}
$$

where $\eta=\frac{\equiv E}{m} \in\left[\eta_{c}, 1\right]$.

- Fixing $\eta=\eta_{c}$ the two branches join with C_{2} regularity at $r=r_{0}$.
- Then using both branches ie., $\phi_{r}=H\left[r-r_{0}\right] \int_{r_{0}}^{r} \frac{\sqrt{R}}{\Delta_{r}}-H\left[r_{0}-r\right] \int_{r_{0}}^{r} \frac{\sqrt{R}}{\Delta_{r}}$, we have a regular scalar field everywhere

Conclusions

- We have obtained a rotating black hole with hair which is everywhere regular.
- Unlike GR for $\Lambda<0$ there is no regular rotating solution!
- Rotating black hole construction is akin to $c_{T}=1$ theories
- Spin 2 perturbations yield separable Teukolsky equation with source [cc, Crisostomi, Langlois, Noui] but scalar kinetic matrix is degenerate ([Babichev, et al], [De Rham, zhang])
- Can obtain any GR vacuum solution with well defined hair in such theories
- One can use this stealth solution to construct numerically other non Kerr solutions by relaxation techniques

[^0]: - Any theory with A_{3} having a zero at some value $X=X_{0}$ is enough to guarantee a solution.

