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RTC for ELT AO 
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Using FPGA to reduce 
acquisition latency 

~  Interface : 10 GbE, low latency acquisition interface 

~  W/O Direct Memory Access to the GPU ram  : multiple data 
copy = introduced latency 
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Using FPGA to reduce 
acquisition latency 

~  Interface : 10 GbE, low latency acquisition interface 

~  With Direct Memory Access to the GPU ram  : single data 
transfer  

= low latency, maximum bandwidth 
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No PCIe P2P at all. 
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~  The NIC DMA engine sends data 
to host memory and sends an 
interrupt to the CPU when the 
buffer is (half)full. 

~  The CPU suspends its tasks and 
saves its current state 
(context switch).  

~  The CPU decapsulates the data 
(Ethernet,TCP/UDP, 
GigeVision…). 
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No PCIe P2P at all. 
 

~  The CPU builds a CUDA stream 
containing GPU operations as 
kernel launch and memory 
transfer orders. 

~  The stream is sent to the GPU  

~  The pixels are copied on the 
GPU RAM (GPU DMA, reading 
process over PCIe) 
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No PCIe P2P at all. 
 

~  The CPU waits for the 
computation to end (or does 
something else) 

~  The results are sent to the 
CPU RAM.  

~  The synchronization mechanisms 
between the GPU and the CPU 
are hidden (interrupts…). 
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No PCIe P2P at all. 
 

~  The CPU encapsulates the 
results (Ethernet, TCP/UDP, …) 

~  The CPU initiates the transfer 
by configuring and launching 
the NIC DMA engine (reading 
process). 
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With PCIe P2P and Custom 
NIC 
 

~  The CPU gets the address and 
size of a dedicated GPU buffer 
and use it to configure the 
NIC DMA engine.  

~  The data are written directly 
to the GPU memory. 

~  The GPU infinitely detects new 
data by polling its memory 
(busy loop), performs the 
computation and fills a local 
buffer with the results.  
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Getting back the results: 
1rst way 
 

~  The CPU gets notified in a 
hidden way that the 
computation.  

~  The CPU initiates the transfer 
from GPU to FPGA (FPGA DMA 
engine -> reading process over 
PCIe).  Custom NIC
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Getting back the results: 
2nd way 
 

~  The GPU sends directly the 
data by writing to the NIC 
addressable space (GPU DMA -> 
write process over PCIe).  

Custom NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Data

Decapsulation

TOE

Polling
Kernel

Still 
minding his
own business

Encaps. Results

R
es

ul
ts



RTC_4_AO workshop
PARIS 2016

Getting back the results: 
3rd way 
 

~  The GPU notifies the FPGA by 
writing a flag on the FPGA 
addressable space.  

~  The FPGA gets the data back 
(FPGA DMA engine -> reading 
process). 
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Using FPGA to reduce 
acquisition latency:  
First tests 
~  Stratix V PCIe development board from PLDA (+ QuickPCIe, 

QuickUDP IP cores) 
42 Gb/s demonstrated from board to GPU; 8.8 Gb/s per 10GbE 
link in loopback mode 

~  10 GbE camera from Emergent Vision Technologies (8.9 Gb/s 
to GPU mem), GigEVision protocol, 1.5 kFPS in 240x240 
pixels coded on 10bits  
(360 FPS in 2k x 1k on 8bits or 1k x 1k on 10bits) 
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Using FPGA to reduce 
acquisition latency 
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P2P from FPGA to GPU 
(way back still launched 
by the CPU) 
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Interrupts vs polling 
(on the cpu) 
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Interrupts vs polling 
(on the cpu) 
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Interrupts vs polling 
(on the cpu) 
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Using FPGA to reduce the 
load on GPU/PCIe/network…  

19	

DPRAM CoG FIFODPRAM CoG FIFODPRAM CoG FIFODble port
RAM

CoG FIFO

DMA over PCIe

read direction

N*N subimages

{N DPRAM
GPU

RAM

~  FPGA are well suited for on-the-fly decapsulation, data 
rearrangement and highly parallelized computation. 

~  Less load on the PCIe, smaller buffers on the GPU ram, less 
latency 

~  Could be done in the WFS, so we lower the load on the 
network  



…or even do everything 
with FPGAs  
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~  Exploring the possibilities with high level development 
environments: 

~  Vendor specific HLS. Xilinx Vivado,… 

~  Quickplay: based on KPN. Has its own HLS. Is gonna be able to use 
other HLS. They are planning to integrate PCIe P2P. 

~  OpenCL: is available for FPGAs (Altera), CPUs, GPUs. Can now handle 
network protocols: Altera introduced I/O channels allowing kernels 
read and write network streams that are defined by the board 
designer. P2P over PCIe should be possible (synchronization…?). 
Integration of custom HDL blocks? 

~  Matlab to HDL. Did someone try it? Maybe useful to help developing 
IPs. 

-> Interactions with HPC tools as MPI, DDS, Corba are quite challenging 


