

RTC_4_AO workshop
PARIS 2016

Low-latency data acquisition
to GPUs using FPGA-based

3rd party devices
Denis Perret, LESIA / Observatoire de Paris

1

RTC for ELT AO

2	

Hard
Real
Time

Soft
Real
Time

tele-
metry40

Ge
 N
et

wo
rk

hi
gh

 b
an

dw
id
th

lo
w

la
te

nc
y

Sensors 40
Ge

 N
et

wo
rk

hi
gh

t
ba

nd
wi
dt

h

Deformable
Mirror

Using FPGA to reduce
acquisition latency

~  Interface : 10 GbE, low latency acquisition interface

~  W/O Direct Memory Access to the GPU ram : multiple data
copy = introduced latency

3	

GPU
RAM

GPU

Host
RAM

Host
CPU

PCIe

10Ge
NIC

Using FPGA to reduce
acquisition latency

~  Interface : 10 GbE, low latency acquisition interface

~  With Direct Memory Access to the GPU ram : single data
transfer

= low latency, maximum bandwidth

4	

GPU
RAM

GPU

Host
RAM

Host
CPU

PCIe

10Ge
NIC

RTC_4_AO workshop
PARIS 2016

No PCIe P2P at all.

NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Handles the interrupts
and the data
decapsulation

Encapsulated Data

~  The NIC DMA engine sends data
to host memory and sends an
interrupt to the CPU when the
buffer is (half)full.

~  The CPU suspends its tasks and
saves its current state
(context switch).

~  The CPU decapsulates the data
(Ethernet,TCP/UDP,
GigeVision…).

RTC_4_AO workshop
PARIS 2016

No PCIe P2P at all.

~  The CPU builds a CUDA stream
containing GPU operations as
kernel launch and memory
transfer orders.

~  The stream is sent to the GPU

~  The pixels are copied on the
GPU RAM (GPU DMA, reading
process over PCIe)

NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
 Initiates the data
and operations stream
transfer

D
ec

ap
su

la
te

d
D

at
a

RTC_4_AO workshop
PARIS 2016

No PCIe P2P at all.

~  The CPU waits for the
computation to end (or does
something else)

~  The results are sent to the
CPU RAM.

~  The synchronization mechanisms
between the GPU and the CPU
are hidden (interrupts…).

NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App

C
om

pu
ta

tio
n

R
es

ul
ts Does something

else. Gets interrupted
periodically.

RTC_4_AO workshop
PARIS 2016

No PCIe P2P at all.

~  The CPU encapsulates the
results (Ethernet, TCP/UDP, …)

~  The CPU initiates the transfer
by configuring and launching
the NIC DMA engine (reading
process).

NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Encapsulates the data
Initiates the
Data transfer

Encapsulated Results

RTC_4_AO workshop
PARIS 2016

With PCIe P2P and Custom
NIC

~  The CPU gets the address and
size of a dedicated GPU buffer
and use it to configure the
NIC DMA engine.

~  The data are written directly
to the GPU memory.

~  The GPU infinitely detects new
data by polling its memory
(busy loop), performs the
computation and fills a local
buffer with the results.

Custom NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Encapsulated Data Data

Decapsulation

TOE

Polling
Kernel

Minding his
own businessD

ecaps.D
ata

RTC_4_AO workshop
PARIS 2016

Getting back the results:
1rst way

~  The CPU gets notified in a
hidden way that the
computation.

~  The CPU initiates the transfer
from GPU to FPGA (FPGA DMA
engine -> reading process over
PCIe). Custom NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Data

Decapsulation

TOE

Polling
Kernel

Still
minding his
own business

Encaps. Results

R
es

ul
ts

RTC_4_AO workshop
PARIS 2016

Getting back the results:
2nd way

~  The GPU sends directly the
data by writing to the NIC
addressable space (GPU DMA ->
write process over PCIe).

Custom NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Data

Decapsulation

TOE

Polling
Kernel

Still
minding his
own business

Encaps. Results

R
es

ul
ts

RTC_4_AO workshop
PARIS 2016

Getting back the results:
3rd way

~  The GPU notifies the FPGA by
writing a flag on the FPGA
addressable space.

~  The FPGA gets the data back
(FPGA DMA engine -> reading
process).

Custom NIC

PCIe

Host Ram

GPU

Ram

Host

CPU App
Data

Decapsulation

TOE

Polling
Kernel

Still
minding his
own business

Encaps. Results

R
es

ul
ts

Using FPGA to reduce
acquisition latency:
First tests
~  Stratix V PCIe development board from PLDA (+ QuickPCIe,

QuickUDP IP cores)
42 Gb/s demonstrated from board to GPU; 8.8 Gb/s per 10GbE
link in loopback mode

~  10 GbE camera from Emergent Vision Technologies (8.9 Gb/s
to GPU mem), GigEVision protocol, 1.5 kFPS in 240x240
pixels coded on 10bits
(360 FPS in 2k x 1k on 8bits or 1k x 1k on 10bits)

13	

Using FPGA to reduce
acquisition latency

14	

PHY UDP

DMA

DMA

DMA

DMA

DMA

DEMUXDECAPS

PHY UDP

Vision_protocol_handling

DATA
GENERATOR

Latency
measurement

DM
C

pixels

commands

answers

PC
Ie

 3
.0

CPU app

camera
control

gpu_ram

Host
ram

lo
op

ba
ck

computation
kernels

CUSTOM_NIC

GPU

pixels
ring
buffer

polling
kernel

DM
com
buffer

measurements

deformable mirror commands

P2P from FPGA to GPU
(way back still launched
by the CPU)

15	

600�

700�

800�

900�

1000�

1100�

1200

1� 63
�

12
5�

18
7�

24
9�

31
1�

37
3�

43
5�

49
7�

55
9�

62
1�

68
3�

74
5�

80
7�

86
9�

93
1�

99
3�

10
55
�

11
17
�

11
79
�

12
41
�

13
03
�

13
65
�

14
27
�

14
89
�

15
51
�

16
13
�

16
75
�

17
37
�

17
99
�

18
61
�

19
23
�

19
85
�

20
47
�

21
09
�

21
71
�

22
33
�

22
95
�

23
57
�

24
19
�

24
81
�

25
43
�

26
05
�

26
67
�

27
29
�

27
91
�

28
53
�

29
15
�

29
77
�

30
39
�

31
01
�

31
63
�

32
25
�

32
87
�

33
49
�

34
11
�

34
73
�

35
35
�

35
97
�

36
59
�

37
21
�

37
83
�

38
45
�

39
07
�

39
69
�

40
31
�

40
93

no p2p & computation

p2p & computation

no p2p & no computation

p2p & no computation

Interrupts vs polling
(on the cpu)

16	

carte PLDA
"Quickplay"

carte
GPU

polling
kernel

PCIE

10GbE
PC APC B

carte PLDA
"non QP"

computing
kernel(s)

RAM
GPU

QPCIE
DMA

UDP0

UDP1

UDP0

UDP1

DDR

DDR

DDR

hdl-kernel

Image
Gen

hdl-kernel

Latency
Meas

c-kernel

COG
(ou pas)

BA
R2

Interrupts vs polling
(on the cpu)

17	

-100�

0�

100�

200�

300�

400�

500�

600�

700�

9300� 9350� 9400� 9450� 9500� 9550� 9600� 9650�

Optimized Interrupt
+ "stress -c 8"

Memory polling

Non Optim Inter Non Optim Inter
+ "stress -c 8"

Interrupts vs polling
(on the cpu)

18	

-100�

0�

100�

200�

300�

400�

500�

600�

700�

9330� 9335� 9340� 9345� 9350� 9355� 9360�

Polling
+ isolated CPU

Polling
+ non isolated CPU

Optimized Interrupt

Using FPGA to reduce the
load on GPU/PCIe/network…

19	

DPRAM CoG FIFODPRAM CoG FIFODPRAM CoG FIFODble port
RAM

CoG FIFO

DMA over PCIe

read direction

N*N subimages

{N DPRAM
GPU

RAM

~  FPGA are well suited for on-the-fly decapsulation, data
rearrangement and highly parallelized computation.

~  Less load on the PCIe, smaller buffers on the GPU ram, less
latency

~  Could be done in the WFS, so we lower the load on the
network

…or even do everything
with FPGAs

20	

~  Exploring the possibilities with high level development
environments:

~  Vendor specific HLS. Xilinx Vivado,…

~  Quickplay: based on KPN. Has its own HLS. Is gonna be able to use
other HLS. They are planning to integrate PCIe P2P.

~  OpenCL: is available for FPGAs (Altera), CPUs, GPUs. Can now handle
network protocols: Altera introduced I/O channels allowing kernels
read and write network streams that are defined by the board
designer. P2P over PCIe should be possible (synchronization…?).
Integration of custom HDL blocks?

~  Matlab to HDL. Did someone try it? Maybe useful to help developing
IPs.

-> Interactions with HPC tools as MPI, DDS, Corba are quite challenging

