

Determinism of GPU solutions for AO real-time computing

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

E-ELT

AO RTC Architecture

- Hard real time system
 (~1 kHz)
- Big computation (5 TFLOPs)
- Low latency
- Maximum jitter : ~10%

Jitter

- Data transfer
- Computation

Green

Flas

 Jitter with standard transfer and computation

Case	Pipeline	Time (jitter) (ms)
64x64 pixels 8x8 subpupils	copy only	33 (35)
	copy + compute	96 (63)
240x240 pixels 40x40 subpupils	copy only	204 (37)
	copy + compute	576 (57)

Data transfer

No GPUDirect RDMA

- Normal way
 - Main memory is a buffer
 - 2 copies by communication
 - CPU manage the communication
- GPUdirect RDMA (Remote Direct Memory Access)
 - No unnecessary copy
 - CPU only use for launching kernel

Transfer result

- GPUdirect
 - Reduce jitter during transfer to almost 0
 - Reduces the transfer time by 2

 But jitter still occurs during computations...

Green

Computation

- Normal way
 - High jitter
 - Depends on CPU
 - Need a Real-Time OS

Time (in μs) for 8k empty kernel call (average : ~6.5μs, peak : ~31μs)

Jitter with RDMA transfer and standard computation

Case	Pipeline	Time(jitter) (ms)
64x64 pixels 8x8 subpupils	copy only	12 (12)
	copy + compute	69 (59)
240x240 pixels 40x40 subpupils	copy only	112 (10)
	copy + compute	475 (50)

Perpetual kernel

- Pros
 - No scheduler
 - No additional cost
 - New features
 - Reduce computation
 - New synchronization features
- Cons
 - More complex implementation, test and debugging
 - Hardware dependent
 - Can't use any existing library

Clock cycle count for 8k iterations

What's next ?

- Implementation of RTC with perpetual kernel
- Integration with frame grabber
 - Test with pixel generator
 - Integration on the optical bench
 - Full loop profiling
- Study on floating point precision to reduce the number of GPU