Miniscule Extremely Large Telescope

Thomas Pfrommer MELT – Optomechanical ELT and phasing emulator test bench

Wavefront sensing and control 23 October 2018

MELT (Miniscule ELT) Optomechanics – Scope

The miniscule ELT is an optomechanical testbench

Test and Validation of ELT key functionalities that will be used during periods of

- MELT deploys optomechanical key components with its control interfaces that are emulated from
 - **Telescope** (Segmented M1, M2 on Hexapod, adaptive M4, ...)
 - Phasing and Diagnostic Station (several WFSs in VIS and NIR)

- Deploy and validate Control system
- Develop and validate wavefront control for commissioning and operations
- Get and validate requirements for the PDS

- Transform PEACE bench into ELT emulator
 - Diagnostics that ressemble functionalities needed for
 - Commissioning
 - Phasing (first time and during operations)
 - Telescope validation

MELT Bench Layout

MELT Optical Design

MELT – Design

MELT as precursor for PDS user requirements

Specifications ready by 08/2019

Design Driver:

> WHAT DOES IT TAKE TO BRING THE TELESCOPE AT THE END OF AIV TO DELIVER DIFFRACTION-LIMITED PERFORMANCE?

Design approach

- Near diffraction limited performance w/ SCAO IR (1400:1700 nm)
- Hexapod (M2) provides up to >8um aberrations
- Rotator provides pupil plane movement
- Active pupil stabilization via T/T mirror for SH/NIR path

MELT – Path to PDS

Sensor arm function for on-axis performance before PFS takes over after field performance is verified

- VIS imager with FoV 12" (MELT) / 1' (PDS) with T/T guider
- VIS SCAO SH high order WFS in closed loop via ELT RTC
- Segment capture and stacking / Guiding / descalloping

NIR focal plane imager J,H (MELT) / J,H,K (PDS)

- Diff-limtd focal plane sampling 9mas (MELT) / 4mas (PDS)
- Strehl measurement / Phasing non-adjacent segments / M4

NIR pupil plane imager J,H (MELT) / J,H,K (PDS)

- Support of SH phasing via phase mask in pupil imaging
- Coherencing / Phasing
- Sampling ~4cm in (ELT) M1 space

High-order SH Phasing

- > 19 SA per seg. /pupil shape control to relative accuracy 10⁻⁴
- > TCCD 512 x 512 (MELT) / 4k x 4k (PDS)
- Capture / Stacking / Descalloping
- Phasing / Coherencing / Segment shaping

Courtesy of H.Bonnet

Pyramid WFS ? (later)

- > M4 petal phasing strategy development
- > Telescope performance verification (pupil fragmentation)
- Match of instrument NGS WFS approach (SCAO)
- Short K-Band
- > Phasing? / Descalloping?

Objectives are broken down into tasks, consisting of use cases and operational scenarios

Tasks	MELT	PDS
Support in populating look-up tables during initial telescope mirror alignment (main axis actuators, M1 PACTs, M2 RBM, M3 RBM, M4 RBM, M5 RBM)	(✓)	~
M1 active control functions characterization (LOO characterization)	(√)	\checkmark
M1 phasing measurement (includes segment capture, stacking, coherenceing,)	\checkmark	\checkmark
Blind slew performance characterization	×	\checkmark
M1 scalloping measurement	\checkmark	\checkmark
M2 active control functions characterization	\checkmark	\checkmark
M3 active control functions characterization	×	\checkmark
M4 response (static and dynamic)	\checkmark	\checkmark
M4 phasing	\checkmark	\checkmark
M5 response (static and dynamic)	\checkmark	\checkmark
Stroke management and offloading schemes (M4, M5, main axis)	\checkmark	\checkmark
SCAO + control handover (cascade, sequential)	\checkmark	\checkmark
SCAO performance (characterization of M4-5 latency, pupil motion, CCS I/F,)	\checkmark	\checkmark
Verification of field/pupil stabilization, including low order AO for wind correction	(✓)	\checkmark
Seeing-limited performance plus acquisition sequence (pointing, focus correction)	(✓)	\checkmark
Offsetting/nodding	(✓)	\checkmark
Non-sidereal tracking performance	×	\checkmark
LGS pointing and field/pupil tracking validation	×	\checkmark
LGS performance characterization (jitter, instantaneous PSF, return flux at Nasmyth,	×	\checkmark
elongation, LGS scattering,)		
Wavefront sensing and control 23 October 2018 12 =	. = =	

- Reuse most of optomechanical mounts from PEACE
- Reuse filter wheels from PEACE
- Add translation stages where necessary
- Optics to be purchased new
- 22 lenses or lens groups
- 4 beam splitters
- 5 fold mirrors
- 4(5) diagnostics paths (VIS imager and WFS, IR diagnostics, SH phasing, pyramid IR WFS)

MELT Optomechanical design

Fold mirrors clearing IM and ASM path

Hexapod (M2) with intermediate focus

Wavefront sensing and control 23 October 2018

▋▋ ▶▄ \$\$ ┿ ▋▌ ▀ ▋▌▋▋ ڝ ▅ ◙ ☲ \$₩ ₽

MELT – Alignment Strategy

Goal NOT to achieve best possible bench alignment

- Replicate situation when first star photons are transferred through full ELT 5 mirror system
- Proper alignment of diagnostics path alone (Sighting telescope / laserpointer)
- Definition of optical diagnostics beam via mirror/target
- All telescope optics placed on bench without light (mechanical tolerances)

MELT – Alignment Strategy

- Option to merge the two beam with periscope, but first: Let WV commissioning begin!!
- Is there light at all? Is it aberrated?
- The PDS with its sensor arm functionality (or, later on the sensor arms in the PFS) with its SH WFS define(s) the optical beam of the ELT. The 5 ELT mirrors are expected to adjust to this reference.

MELT – Schedule

- Optics procurement ongoing (shipment 5th Nov.)
- Mechanical detailed design finished, all drawings in production (first week November)
- Electronics design (Beckhoff PLC-based) finished, manufactured until first week November
- PEACE bench in use until End October
- Alignment ends Mid December
- In December the MELT control team can fully work with light
- End 2018 all parts are to be controlled stand-alone

MELT Guide Probe – VIS imager

- No imager for now (Potential COTS sCMOS candid.)
- 8mm x 8mm focal plane, 10" FoV, 1k x 1k and 500Hz on ROI
- 807um/arcsec, f/14.38, 3.5% distortion (edge of field)

WFE:

MELT Guide Probe – SCAO WFS

- Currently: ALPAO 256 x 256 with 207um lenslets, 16 x 16 subapertures on 3.3 x 3.3 mm pupil
- Potential COTS? 800 x 800 to run at 700 Hz
- Pupil blur: 3.8% of SA on axis, 9%/8% of SA in field
- Lenslet plate scale on detector: 11 mas/um

+/-1.1arcsec field per SA

WL [um]	WFE [rms nm] On axis	WFE [rms nm] field
0.5	80	120
0.6	88	215
0.7	28	126
0.8	136	50

WFE:

MELT – IR pupil and field imager

- Phasing via pupil imaging
- Diffraction limited field imaging (9.5 mas/px)
- Support SH phasing by measuring pupil movement and controlling
 - Pupil steering mirror
- Currently Xenics130 with 320x256 px at 85 Hz, 30um pitch

6.7 mm pupil image

Focal plane WFE:

WL	WFE [rms	Ensquared energy
[um]	nm] On axis	80 on axis [um]
1.4	117	260 x 260
1.5	114	280 x 280
1.6	128	320 x 320
1.7	175	360 x 360

Pupil	plane WFE	:
WL	WFE [rms	
[um]	nm] On axis	
1.4	96	
1.5	100	
1.6	111	
1.7	143	╧║┝╬┿║═║║║╧┍║╧┇╝╝╬║

WFE:

MELT – SH phasing / Pyramid

- Zoom optics (manual)
- Reuse SHAPS (from PEACE) with currently TCCD with 512x512px non-sync frame rate

WL	WFE [rms nm
[um]	On axis
0.5	122
0.6	176
0.7	200
0.8	300
0.9	470

NIR Pyramid not in current design, but upgrade foreseen in 2019/2020, via beamsplitter in NIR path