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Challenges of vibration mitigation in adaptive optics of extremely large telescopes

Limited telescope resolution by

* Atmospheric turbulences

» Structural vibrations
« Dominant in tip-tilt modes (also defocus, ...)
* Ininterferometry OPD

Optical performance limited by dynamics of Images: ESO
active components

* Tip-tilt mirror, large amplitudes, slow dynamics

 Deformable mirror, small amplitudes, high frequencies
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Achieving diffraction limited performance in the tip-tilt modes of the ELT

Secondary Mirror M2
4.2 m diameter

Fourth Mirror M4
2.4m diameter
Deformable Mirror

Fifth Mirror M5
27m x 2.1m
TipTilt Mirror

Primary Mirror M1
39m diameter
798 hexagonal segments

Tertiary Mirror M3
3.8 m diameter

Instruments

Image: ESO
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Goal: Designing a controller for the Tip-Tilt MISO system to achieve diffraction limited performance
» Considering scenarios with strong atmospheric turbulences and structural vibrations
» Stroke limitations of the actuators (amplitude, slew rate)

» compensation mirror dynamics

B) Model Predictive Control
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Agenda

Combining MPC with a Disturbance Feedforward
Control for faint NGS




Modelling the disturbances of an adaptive optics system

Atmospheric turbulences
» Statistical spatial description by Kolmogorov
» Describing the temporal behavior by Taylor’s “frozen flow” hypothesis

éatm(xa Y, t) = —UV@atm (3:, Y, t)a

» Approximation of the temporal autocorrelation function by an AR2 model v« —;

Qbatm('r&ya 0) = g(ma y)

Structural vibrations

» [Each mirror of the optical path introduces vibrations due to the mounting
» Detection of cumulative vibrations by the wavefront sensors

» Approximation of the temporal autocorrelation function by an AR2 model
>

Modelling Tip-Tilt telescope vibrations by an equivalent mechanical modal model

Discrete state space representation of a single natural frequency:
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Models for sensing an compensating the tip-tilt residual wavefront error

WEFS as a time delay system
» Receiving reconstructed WFS in Zernike modes
» Typically 2 samples time delay (exposure, reconstruction)
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Compensation mirror dynamics
» M4 small amplitudes, large frequency range
» Mb5 large amplitudes, but small bandwidth

Mirror dynamics in tip-tilt modes

TpMm,i| | AbMm.i 0 TOM,i | Bpwmi| [upwm,i
TTT,i 0 Arti| |ZTT Byt | |uTT
A -~ >y W

AoM,i Bow,i
TDM,i
yom,i = [Comi Ot
~ -~ o | LTT,i
CoM,i

University of Stuttgart ¢ Institute for System Dynamics ¢« Martin Gliick

|G, (jw) | (dB)

Structural Atmospheric
Vibrations Turbulences
U,\."lb () dutm
— d
Tip-Tilt yrr s
Mirror -
urrr
Deformable [YDM
Ya —{ Controller y— eh:[);:?(;irb ¢ —O—1— Ures
YWFS Wavefront
Sensor

Tip-tilt transfer functions

0

-20

40

— M4
=== M5

1 10
Frequency (Hz)

100

1000



Creating an open-loop description of the AO system for the controller design

Structural Atmospheric
Vibrations Turbulences
Measurement equation: oy | datm
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Corresponding dynamic model:

zi[k + 1] = Az [k] + Biui[k] + Vivi[k],

At B1,iCai —Bri:Comy 0 0
A;=1] 0 Agi 0 ,Bi = 0 [,Vi=|Vas
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Design of a model predictive controller for an AO system

N
min  Ji =Y |lyilk+ jlk]llR, + luilk + j15]|| .
=0

st.  zi[k 4§+ 1|k] = Az;[k + j|k] + Bui[k + j|k]
yilk + j|k] = Cizi[k + j|K]
|u2[k+j|kH < Umax

> State of the dynamic system is typically unknown, estimation of z;[k|k] by a Kalman filter

1
» Reformulation of the cost function as a quadratic program (QP) for the horizon N EU’THU +ulyg
» Solving the QP for each time step with e.g. qpOASES (2 ms)

» Choosing an applicable prediction horizon N (real time capability)
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Comparison with the LQG control and the Pl dual stage approach

Pl control

» Current proposal for the controller of the ELT
» Dual-stage approach with Pl controller
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Solving the optimal control problem:
ulk] = —Kx[k]

K[k] = (B*P[k|B + R)) " B"P[k|A
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Influences on the residual tip-tilt for periodic disturbances and stroke limitations at the DM

» Sinusoidal disturbance with normalized amplitude of 1

» 0.1 amplitude Tip-Tilt input constraints at the deformable mirror
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Evaluating the controller for a ELT tilt random signal

Tilt (arcsec)
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Investigations on the real-time capability of the MPC controller

Disturbance
Mirror

» Scaled laboratory setup
» Injection of tip-tilt disturbances by a disturbance mirror

» Compensation with a tip-tilt and DM (ALPAO 52) mirror
» ELT mirror dynamics considered by simulation

» High-Order modes compensated by a classical integral
control

» AO control on a real-time computer (Sample Rate 2 ms)
» QP solved by gpOASES within 2ms
Future Work

» Improving the compensation performance
» Testing different QP solvers

‘ Alternative Approach for the ELT Tip-Tilt control
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Model Predictive Control for Tip-Tilt Vibration Mitigation




Disturbance Feedforward Control for the observations with faint NGSs

Disturbance Feedforward (DFF) Control

» Measuring vibrations with additional accelerometers
» Reconstruction of the optical aberrations (Tip,Tilt)
» Disturbance Feedforward at the compensation mirrors

m) Independent of WFS exposure time

m) Suppression of high frequency vibrations

Combining DFF control with a MPC approach
» Improving the vibration state estimation
» Optimal control for the compensation mirrors

m) Increased Strehl for faint natural guide stars
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Sensor fusion of WFS and accelerometers by a multi-rate observer

Combining the accelerometer and WFS vibration model

» Measuring of vibrations at each telescope mirror with accelerometers

» WFS measures cumulative vibrations

» Equivalent modal model for each telescope mirror

» Reconstructing tip-tilt modes of each mirror

» Calculating cumulative tip-tilt in the focal plane with a geometric model of the telescope

{yWFS,i [k]] _ |:CT,2' 0
yacc,ilk] 0 Caccy
y:[rk] g'z

Handling of different sample rates of WFS and accelerometers
» Accelerometer sample rate multiple of WFS rate
» Estimating the current system state by a Kalman Filter

Calculating the Kalman gain

2kl — 1] = A2k — 1)k — 1] + Byulk — 1] ‘
2[k[k] = 2[k|k — 1] + L;[k] (y:[k] — g[k])
Adapting C to the
incoming sensor signals
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Results of a vibration mitigation based on a multi-rate Observer

Sinusoidal Excitation: WEFES 100 Hz and ACC 500 Hz
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Investigations on the Disturbance Feedforward Control at the LBT

Current Status of Implementation

» Measuring Vibrations at each telescope mirror
(already in use for OPD compensation)

» Reconstruction of the tip-tilt signal in the focal plane
» Transformation into DM Space

» Model-based latency compensation

» Sending Signals over telescope network to DM

» Combining WFS and accelerometer signals

‘ We're looking forward to test the implementation at the telescope!

University of Stuttgart ¢ Institute for System Dynamics * Martin Gliick 17



Conclusion

» Investigations on the performance of the ELTs adaptive optics system
» Designing a MPC controller for considering input constraints
» Comparison with a LQ and Pl controller

» Best results with a MPC by considering actuator constraints

» Improving the performance for faint NGS by using additional accelerometers within a multi-rate observer

Outlook

* Investigations on the speed of optimization algorithms
« Studying the stability and robustness of the MPC controller

* Implementing of a Disturbance Feedforward Control at the LBT
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