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The model assumptions for single-conjugate AO

The sensor is a Shack-Hartmann of size N × N:

s(k) = Gφ(k) + e(k) (1)

where e(k) ∼ N (0, σ2
e I).

The mirror is a static device with a one time step delay:[
sm(k)
φm(k)

]
=

[
B
H

]
u(k − 1) (2)

The sensor measures the contribution of both the disturbance and of the
corrections applied by the mirror:[

s(k)
φ(k)

]
=

[
sm(k)
φm(k)

]
+

[
st(k)
φt(k)

]
+

[
e(k)

0

]
(3)

The LQG criteria in AO boils down to a linear-quadratic estimation of φ(k + 1)
and a deterministic control problem for deriving the control inputs written as:

min
u(k)

‖φ̂(k + 1|k)‖2
2 + u(k)TQu(k) (4)

for Q semi-positive definite.
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Deriving an unbiased minimum-variance estimate of φt(k + 1)

The temporal dynamics of the sensor signals are modelled in general with a
state-space model: {

x(k + 1) = Ax(k) + Kv(k)
st(k) = Cx(k) + v(k)

(5)

An estimate of st(k + 1) is then available using the innovation form:{
x̂(k + 1|k) = (A−KC)x̂(k|k) + Kst(k)
ŝt(k|k) = Cx̂(k|k)

(6)

Data-driven methods - not scalable:

I Subspace identification, Hinnen and Verhaegen (2007)

I AutoRegressive modeling, Guyon and Males (2017)

When setting C = G, x(k) = φt(k) and A = aI, solve a Riccati equation:

I Exploit sparsity, Correia et al. (2010)

I Distributed controller using FFT operations, Massioni et al. (2011)
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Research questions

An alternative cost function for the LQR problem is:

min
u(k)

‖ŝ t(k + 1|k) + Bu(k)‖2
2 + u(k)TQu(k) (7)

The state-space model in innovation form is approximated by a VAR model3

with temporal order p such that the prediction is:

ŝt(k + 1|k) ≈
p−1∑
i=0

Mist(k − i) (8)

1. What is a dense though data-sparse representation for identifying from
data and in a scalable manner the spatial and temporal dynamics of the
turbulence?

2. To what extent the data-driven approach proposed handles the balance
between computational complexity and data storage, and minimizing the
temporal error?

3We assume the driving noise of this VAR model zero mean white Gaussian with identity
covariance matrix.
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Tensor auto-regressive models



7/30

The Kronecker product

Definition 1. For two matrices A,B in RN×N , the Kronecker product A⊗ B in

RN2×N2

is defined with:

A⊗ B =

a11B . . . a1NB
...

...
aN1B aNNB


Proposition 1. For matrices A,B,C of compatible sizes,

vec(ABC) = (CT ⊗ A)vec(B)
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Fibers, matricization of a tensor and the n-mode tensor product
Definition 2. A n-mode fiber of a d-th order tensor X is a vector
X(i1, . . . , in−1, :, in+1, . . . , id).

  

1-mode fibers 2-mode fibers 3-mode fibers

Matricization
Figure 1: The n-mode matricization is formed by reshuffling the n-mode fibers to be
the columns of the matrix X(n).

Proposition 2. Let (X,Y) ∈ RJ1×...×Jd × RI1×...×Id . If M ∈ RIn×Jn , then
Y = X×n M is equivalently written with Y(n) = MX(n).



9/30

The spatial dynamics are embedded into the coefficient matrices of VAR
models.

A static input-output map between vectorized 2D signals has a two-level
structure: the matrices are block-matrices.

Figure 2: One-dimensional (left) and two-dimensional (right) array of sensor.

When the underlying function from R2 to R is separable in its coordinates, the
matrix is written with a single Kronecker product.
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The class of low Kronecker rank matrices

Proposition 3. Any matrix Mi ∈ R2N2×2N2

can be decomposed with∑r
j=1 Mi,j,2 ⊗Mi,j,1 where (Mi,j,1,Mi,j,2) ∈ R2N×2N × RN×N .

The integer r is called the Kronecker rank.

Definition 3. Mi is said to be low Kronecker rank when r � N.

This parametrization is such that:

I it is not affine in the parameters.

I it is a data-sparse representation: rN2 parameters to store compared to N4

when unstructured.



11/30

A matrix-AR model

The VAR model is rewritten into a matrix-AR model:

St(k + 1) =

p−1∑
i=0

r∑
j=1

Mi,j,1St(k − i)MT
i,j,2 + V(k) (9)

where St(k) ∈ R2N×N is such that:

St(k) =

st1,1 (k) st1,2 (k) . . . st1,N (k)
...

...
stN,1 (k) stN,2 (k) . . . stN,N (k)

 (10)

Computing (Mi,j,2 ⊗Mi,j,1)st(k) costs O(N4) compared to O(N3) reshuffling
into Mi,j,1St(k)MT

i,j,2.
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Toward tensor AR models

Let d ∈ N and (J1, . . . , Jd) integers such that
∏d

i=1 Ji = 2N2. We parametrize
Mi with:

Mi =
r∑

j=1

Mi,j,d ⊗ . . .⊗Mi,j,1 (11)

where Mi ∈ RJi×Ji .

It can be shown that the VAR model can be transformed into a tensor AR
model:

St(k) =

p−1∑
i=0

r∑
j=1

St(k − i)×1 Mi,j,1 ×2 . . .×d Mi,i,d + V(k) (12)

We define next the tensor St(k).
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Tensorizing the sensor data

Tensorizing the sensor data corresponds to partitioning the 2D sensor array.
The vector st(k) is reshaped into a tensor denoted as St(k) ∈ RJ1×...×Jd . Each
sensor signal at node i , j is re-indexed with a tuple of size d rather than with
two position indices.

Figure 3: Partitioning a 2D array of sensor data with 32× 32 nodes (in blue) with a
4th order tensor St(k) ∈ R8×8×4×4. The red lines indicate the partition into blocks of
8× 8 matrices.
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The computational advantages
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Tensor-based predictive control: the closed-loop

Algorithm 1: Control algorithm minimizing the residual sensor measurement
with a tensor-based wavefront prediction

1: st(k) = s(k)− Bu(k − 1)
2: Reshuffle st(k) into St(k)
3: Compute a prediction

Ŝt(k + 1|k) =
∑p−1

i=0

∑r
j=1 St(k − i)×1 Mi,j,1 ×2 . . .×d Mi,j,d

4: Reshuffle Ŝt(k + 1|k) into ŝt(k + 1|k)
5: Solve the sparse least-squares to get u(k)
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Efficient online prediction for dense data-sparse models
There is no over-parametrization as when using Kronecker products: the entries
of a tensor are only reshuffled.

Complexity: O(N2(d+1)/d)
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Figure 4: Ratio N4

N2(d+1)/d which reflects the improvement in the computational

complexity w.r.t the unstructured case for computing online a prediction as a function
of the size of the array.



17/30

The identification problem

We collect Nt temporal samples in open-loop.

If Mi,j,n̄ is known for all
(i , j , n̄) ∈ {1, ..., p} × {1, ..., r} × {1, ..., n− 1, n + 1, ..., d}, then we identify the
remaining ones from the (now convex) cost function:

min
Mi,j,n

Nt∑
k=p+1

‖st(k)−
p∑

i=1

r∑
j=1

(Mi,j,d ⊗ . . .⊗Mi,j,1)st(k − i)‖2
2 (13)

which is rewritten into:

min
Mi,j,n

Nt∑
k=p+1

‖St(n)
(k)−

p∑
i=1

r∑
j=1

Mi,j,nSt(n)
(k − i)

(
Mi,j,d ⊗ . . .⊗Mi,j,n+1 ⊗Mi,j,n−1 ⊗ . . .⊗Mi,j,1

)T‖2
F (14)

Starting from random initial guesses, this least-squares is solved sequentially for
all n ∈ {1, . . . , d}, and this is repeated until convergence to a stationary point.
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Laboratory experiments
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The optical testbed

Laser

P1

L1

TS

L2

L3

BS1

DM

L4

C1

SH+C2
BS2

L5

  

TS

L2 L3 DM

BS1

L4

L5

BS2

SH+C2

C1

Figure 5: Views of the laboratory testbed. P1 is a pin-hole, L1 till L5 are lenses, TS is
a rotating disk for simulating the turbulence, BS1 and BS2 are beam splitters, DM is
the kilo-DM, C1 is the Point-Spread-Function camera, SH+C2 is the wavefront sensor.

Laser wavelength λ 635nm
Beam size 9mm

Fried parameter r0 from 1.2 to 1.8mm
Active lenslets 689 (array of 30× 30)

Active actuators 706
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The experiment

Objective. Analyze the prediction error when parametrizing the coefficient
matrices with a sum of Kronecker.

The experiment. We vary the rotation speed of the disk to vary the
Greenwood per sample frequency ratio:

f̄ =
fG
fS

:= 0.427
v

r0

1

fS
(15)

We collect open-loop data, identify a model, check its accuracy on a different
data batch, and close the loop.

Table 1: Partitions in the SH sensor associated with the parametrization

Tensor order, d Size of factor matrices, J
2 (60, 30)
3 (12, 6, 25)
4 (12, 5, 6, 5)
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Open-loop: validation dataset

MSE: σ2 =
1

Nval

Nval−1∑
k=0

(φ̂t(k + 1|k)− φt(k + 1))2 (16)

where Nval is the number of temporal samples in the validation dataset.

0.03 0.05 0.1 0.2 0.3 0.4

0.01

0.02

0.05

0.1

0.2

0.5

1

Figure 6: MSE on validation data as a function of the Greenwood per sample
frequency ratio. ξ is the relative RMSE between the interpolation with a second order
polynomial and the experimental points.
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Influence of the parameters p and r

Table 2: Relative improvement on σ2 when increasing either the temporal order or the

Kronecker rank while d = 2. (ra, pa)→ (rb, pb) :=
|σ2

(p,r)=(pa,ra)−σ
2
(p,r)=(pb,rb )|

σ2
(p,r)=(pa,ra)

(ra, pa)→ (rb, pb) f̄
∈

[0
.0

26
, 0
.0

61
]

f̄
∈

[0
.0

69
, 0
.1

0]
f̄
∈

[0
.1

1,
0.

15
]

f̄
∈

[0
.1

5,
0.

22
]

f̄
∈

[0
.2

4,
0.

31
]

f̄
∈

[0
.3

3,
0.

40
]

(3, 1)→ (3, 3) 0.23 0.22 0.29 0.27 0.29 0.28
(3, 3)→ (3, 5) 0.067 0.10 0.11 0.12 0.13 0.14
(1, 3)→ (3, 3) 0.48 0.30 0.35 0.30 0.28 0.24
(3, 3)→ (5, 3) 0.16 0.14 0.13 0.12 0.10 0.11
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Closed-loop: Strehl ratio
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Figure 8: Strehl ratio as a function of the Greenwood per sample frequency ratio. ξ is
the relative RMSE between the interpolation with a second order polynomial and the
experimental points.
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Closed-loop: influence of the temporal order p
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Figure 9: Encircled energy as a function of the Greenwood per sample frequency ratio.
The relative improvement brought by the case (p, r , d) = (3, 3, 4) over
(p, r , d) = (1, 3, 4) is shown.
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Conclusion
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Conclusion

The main points:

I A large-scale problem with unknown matrix structure is parametrized with
a sum of Kronecker products.

I Trade-off between data-sparsity of the model representation and the bias
between the true and approximated model structure.

I Especially relevant for large-scale sensors and AO systems operating in
large Greenwood per sample frequency ratio.

Current/future work:

I Further tests of the algorithm under more various atmospheric settings

I How to efficiently solve Lyapunov and Riccati equations when all
state-space matrices are sums-of-Kronecker?
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Further references

AO-related papers:

I B. Sinquin and M. Verhaegen, ”Tensor-based predictive control for
extremely large-scale single conjugate adaptive optics,” in J. Opt. Soc.
Am. A 35, 1612-1626 (2018)

I G. Monchen, B. Sinquin, M. Verhaegen, ”Recursive Kronecker-Based
Vector Autoregressive Identification for Large-Scale Adaptive Optics”, in
IEEE Control on Systems Technology, 2018.

Matlab toolbox T4SID: https://bitbucket.org/csi-dcsc/t4sid/

https://bitbucket.org/csi-dcsc/t4sid/
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Numerical experiments with OOMAO: settings

Number of lenslets 16× 16
Diameter 4.8m
Fried parameter r0 (meter) 0.15
Outer scale (meter) 30
Number of actuators 15× 15
Number of temporal samples in identification batch 104

Atmosphere with 3 layers at altitude {0, 4, 10} × 103m with speed {V , 10, 25}
in the wind directions {0, π/4, π}
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Numerical experiments with OOMAO: results
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Figure 10: Residual wavefront in closed-loop for the MVM, Kalman filtering with
A = aI, and a tensor autoregressive model with d = 2.
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Dealing with a circular aperture

1. Pad with 0

2. Solve a low-rank matrix completion problem:

min
mt (k)(i,j)(i,j)∈E\A

‖M t(k)‖? (17)

s.t ∀(i , j) ∈ A,mt(k)(i , j) = st(i , j) (18)

3. Recast the sensor data into a third-order tensor and estimate the missing
data assuming a low-rank Canonical Polyadic Decomposition (CPD), i.e
sum of few rank-one terms:

X =
r∑

i=1

aj,1 ◦ . . . ◦ aj,d
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